OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27650–27657

Generation and tight focusing of hybridly polarized vector beams

Gilad M. Lerman, Liron Stern, and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27650-27657 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally demonstrate the generation of hybridly polarized beams by transmitting radially polarized light through a wave plate. We show that such beams span a closed circle on the surface of the Poincaré sphere whose center coincides with the center of the sphere. In addition we numerically investigate the field and energy density distribution across the focal plane of a high NA lens illuminated by such a hybrid beam. The results show an interesting polarization distribution with 3D orientation and space variant ellipticity. This kind of polarization distributions may be used for a variety of applications, e.g. particle orientation analysis, microscopy and in atomic systems.

© 2010 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(260.5430) Physical optics : Polarization
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Physical Optics

Original Manuscript: November 17, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 10, 2010
Published: December 15, 2010

Gilad M. Lerman, Liron Stern, and Uriel Levy, "Generation and tight focusing of hybridly polarized vector beams," Opt. Express 18, 27650-27657 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  2. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  3. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002). [PubMed]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  5. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008). [CrossRef] [PubMed]
  6. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22(7), 1432–1441 (2005). [CrossRef]
  7. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999). [CrossRef]
  8. W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, “Selective Excitation of the TE01 Mode in Hollow-Glass Waveguide Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 17(7), 1441–1443 (2005). [CrossRef]
  9. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000). [CrossRef]
  10. M. Born, and E. Wolf, Principles of Optics: Electromagnetic theory of propagation, interference and diffraction, 7th ed. (Cambridge University Press, 1999) pp. 24–38.
  11. X. L. Wang, Y. Li, J. Chen, C. S. Guo, J. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010). [CrossRef] [PubMed]
  12. G. Milione, and R. R. Alfano, Cylindrical vector beam transformations and hybrid vector beams” in Frontiers in Optics (FiO)/Laser Science (LS) (Optical Society of America, Washington, DC, 2010), paper FWC4.
  13. G. Milione, H. I. Sztul, and R. R. Alfano, “Propagation of a hybrid vector polarization beam in a uniaxial crystal,” Proc. SPIE 7613, 76130I (2010). [CrossRef]
  14. Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17(17), 14517–14525 (2009). [CrossRef] [PubMed]
  15. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18(10), 10777–10785 (2010). [CrossRef] [PubMed]
  16. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007). [CrossRef] [PubMed]
  17. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, “Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes,” Appl. Opt. 46(16), 3304–3310 (2007). [CrossRef] [PubMed]
  18. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007). [CrossRef] [PubMed]
  19. A. K. Spilman and T. G. Brown, “Stress birefringent, space-variant wave plates for vortex illumination,” Appl. Opt. 46(1), 61–66 (2007). [CrossRef]
  20. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002). [CrossRef]
  21. T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002). [CrossRef]
  22. G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33(23), 2782–2784 (2008). [CrossRef] [PubMed]
  23. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  24. Y. Kozawa and S. Sato, “Focusing property of a double-ring-shaped radially polarized beam,” Opt. Lett. 31(6), 820–822 (2006). [CrossRef] [PubMed]
  25. B. Hao and J. Leger, “Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam,” Opt. Express 15(6), 3550–3556 (2007). [CrossRef] [PubMed]
  26. N. Davidson and N. Bokor, “High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens,” Opt. Lett. 29(12), 1318–1320 (2004). [CrossRef] [PubMed]
  27. E. Y. S. Yew and C. J. R. Sheppard, “Tight focusing of radially polarized Gaussian and Bessel-Gauss beams,” Opt. Lett. 32(23), 3417–3419 (2007). [CrossRef] [PubMed]
  28. D. Biss and T. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9(10), 490–497 (2001). [CrossRef] [PubMed]
  29. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007). [CrossRef]
  30. W. B. Chen and Q. W. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006). [CrossRef]
  31. X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282(17), 3421–3425 (2009). [CrossRef]
  32. W. B. Chen and Q. W. Zhan, “Diffraction limited focusing with controllable arbitrary three-dimensional polarization,” J. Opt. 12(4), 045707 (2010). [CrossRef]
  33. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959). [CrossRef]
  34. G. M. Lerman and U. Levy, “Tight focusing of space variant vector optical fields with no cylindrical symmetry of polarization,” Opt. Lett. 32, 2194–2196 (2007). [CrossRef] [PubMed]
  35. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006). [CrossRef] [PubMed]
  36. F. K. Fatemi, and G. Beadie, “Imaging Atomic States Using Radially-Polarized Light,” in Frontiers in Optics (FiO)/Laser Science (LS) (Optical Society of America, Washington, DC, 2010), paper FWP6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (897 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited