OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27697–27702

Multi-wavelength laser from dye-doped cholesteric polymer films

Yuhua Huang and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27697-27702 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multi-wavelength laser is demonstrated using a dye-doped cholesteric polymer film whose reflection bandwidth is broadened with several oscillations. Due to the abrupt change of the density of state between oscillation peak and valley, each oscillation functions as a photonic band gap for generating a laser wavelength under the excitation of a pumping laser. As a result, a multiple wavelength laser is generated. Results indicate that the dye-doped cholesteric liquid crystal polymer film is a good candidate for fabricating broadband lasers such as white light lasers. Potential applications include experimental testing of laser materials, identification markers, information displays, and inertial confinement laser fusion.

© 2010 OSA

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 1, 2010
Revised Manuscript: November 26, 2010
Manuscript Accepted: December 12, 2010
Published: December 16, 2010

Yuhua Huang and Shin-Tson Wu, "Multi-wavelength laser from dye-doped cholesteric polymer films," Opt. Express 18, 27697-27702 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. F. Roelens, J. A. Bolger, D. Williams, and B. J. Eggleton, “Multi-wavelength synchronous pulse burst generation with a wavelength selective switch,” Opt. Express 16(14), 10152–10157 (2008). [CrossRef] [PubMed]
  2. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007). [CrossRef] [PubMed]
  3. X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14(18), 8205–8210 (2006). [CrossRef] [PubMed]
  4. P. J. Smith, D. W. Faulkner, and G. R. Hill, “Evolution scenarios for optical telecommunication networks using multiwavelength transmission,” Proc. IEEE 81(11), 1580–1587 (1993). [CrossRef]
  5. Y. M. Serebrennikova, L. H. Garcia-Rubio, J. M. Smith, and D. E. Huffman, “Multi-wavelength spectroscopy of oriented erythrocytes,” Proc. SPIE 7572, 75720E-75720E-10 (2010). [CrossRef]
  6. Y. Ni, Y. Lai, S. Brandes, and S. Kokot, “Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example,” Anal. Chim. Acta 647(2), 149–158 (2009). [CrossRef] [PubMed]
  7. D. Pudo, M. Depa, and L. R. Chen, “Single and Multiwavelength All-Optical Clock Recovery in Single-Mode Fiber Using the Temporal Talbot Effect,” J. Lightwave Technol. 25(10), 2898–2903 (2007). [CrossRef]
  8. M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988). [CrossRef]
  9. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993). [CrossRef]
  10. E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii, “A high SNR, 150 ch supercontinuum CW optical source with precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Optical Fiber Communication Conf., 2001, ME2–1.
  11. H. Shi, G. Alphonse, J. Connolly, and P. Delfyett, “20x5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,” Electron. Lett. 34(2), 179–181 (1998). [CrossRef]
  12. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10x30 GHz pulse train generation from semiconductor amplifier fiber ring laser,” IEEE Photon. Technol. Lett. 12(1), 25–27 (2000). [CrossRef]
  13. N. Park, J. W. Dawson, and K. J. Vahala, “Multiple wavelength operation of an Erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 4(6), 540–541 (1992). [CrossRef]
  14. N. Park and P. F. Wysocki, “24-Line multiwavelength operation of Erbium-Doped fiber-Ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996). [CrossRef]
  15. B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1022-Channel WDM transmitter,” in Eur. Conf. Optical Communication, 1999, Post deadline Paper PD1–3.
  16. W. St. John, W. Fritz, Z. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995). [CrossRef] [PubMed]
  17. Y. H. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261(1), 91–96 (2006). [CrossRef]
  18. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003). [CrossRef]
  19. H. P. Yu, B. Y. Tang, J. H. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005). [CrossRef] [PubMed]
  20. P. J. W. Hands, S. M. Morris, T. D. Wilkinson, and H. J. Coles, “Two-dimensional liquid crystal laser array,” Opt. Lett. 33(5), 515–517 (2008). [CrossRef] [PubMed]
  21. C.-R. Lee, S.-H. Lin, H.-C. Yeh, and T.-D. Ji, “Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient,” Opt. Express 17(25), 22616–22623 (2009). [CrossRef]
  22. S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Express 18(9), 9496–9503 (2010). [CrossRef] [PubMed]
  23. C. T. Wang and T. H. Lin, “Multi-wavelength laser emission in dye-doped photonic liquid crystals,” Opt. Express 16(22), 18334–18339 (2008). [CrossRef] [PubMed]
  24. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in dye doped cholesteric liquid crystal polymer network,” Adv. Mater. (Deerfield Beach Fla.) 14(10), 746–749 (2002). [CrossRef]
  25. Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003). [CrossRef]
  26. Y. Zhou, Y. H. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited