OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27703–27711

Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides

Laura Agazzi, Jonathan D. B. Bradley, Meindert Dijkstra, Feridun Ay, Gunther Roelkens, Roel Baets, Kerstin Wörhoff, and Markus Pollnau  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27703-27711 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Monolithic integration of Al2O3:Er3+ amplifier technology with passive silicon-on-insulator waveguides is demonstrated. A signal enhancement of >7 dB at 1533 nm wavelength is obtained. The straightforward wafer-scale fabrication process, which includes reactive co-sputtering and subsequent reactive ion etching, allows for parallel integration of multiple amplifier and laser sections with silicon or other photonic circuits on a chip.

© 2010 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(140.4480) Lasers and laser optics : Optical amplifiers

ToC Category:
Integrated Optics Devices

Original Manuscript: October 11, 2010
Revised Manuscript: November 26, 2010
Manuscript Accepted: December 1, 2010
Published: December 16, 2010

Laura Agazzi, Jonathan D. B. Bradley, Meindert Dijkstra, Feridun Ay, Gunther Roelkens, Roel Baets, Kerstin Wörhoff, and Markus Pollnau, "Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides," Opt. Express 18, 27703-27711 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  2. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005). [CrossRef]
  3. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008). [CrossRef]
  4. G. L. Bona, R. Germann, and B. J. Offrein, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Develop. 47(2), 239–249 (2003). [CrossRef]
  5. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, A. Driessen, and P. V. Lambeck, “Design and application of compact and highly tolerant polarization-independent waveguides,” J. Lightwave Technol. 25(5), 1276–1283 (2007). [CrossRef]
  6. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol. 25(9), 2579–2589 (2007). [CrossRef]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  8. G. Masini, L. Colace, G. Assanto, H. C. Luan, K. Wada, and L. C. Kimerling, “High responsitivity near infrared Ge photodetectors integrated on Si,” Electron. Lett. 35(17), 1467–1468 (1999). [CrossRef]
  9. A. W. Fang, H. Park, Y. H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(1–2), 28–35 (2007). [CrossRef]
  10. G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. Di Cioccio, and C. Lagehe-Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007). [CrossRef]
  11. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009). [CrossRef]
  12. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005). [CrossRef] [PubMed]
  13. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004). [CrossRef]
  14. J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009). [CrossRef] [PubMed]
  15. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 Km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulation,” Electron. Lett. 36(24), 2027–2029 (2000). [CrossRef]
  16. L. H. Spiekman, “Semiconductor optical amplifiers,” in Optical Fiber Telecommunications Volume IVA, I. P. Kaminow and T. Li, eds. (Academic Press, 2002), pp. 699–731.
  17. S. Blaize, L. Bastard, C. Cassagnètes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photon. Technol. Lett. 15(4), 516–518 (2003). [CrossRef]
  18. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010). [CrossRef] [PubMed]
  19. Frankfurt Laser Company, http://www.frlaserco.com/
  20. J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectrochem. Acta Part A 60(14), 3243–3247 (2004). [CrossRef]
  21. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248 nm deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005). [CrossRef]
  22. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996). [CrossRef]
  23. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007). [CrossRef]
  24. J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 22(5), 278–280 (2010). [CrossRef]
  25. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010). [CrossRef]
  26. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010). [CrossRef] [PubMed]
  27. ePIXfab, the silicon photonic platform. http://www.epixfab.eu/
  28. X. Phoeni, http://www.phoenixbv.com/
  29. O. V. Ivanova, R. Stoffer, L. Kauppinen, and M. Hammer, “Variational effective index method for 3D vectorial scattering problems in photonics: TE polarization,” in Progress In Electromagnetics Research Symposium, (The Electromagnetics Academy, Moscow, 2009), pp. 1038–1042.
  30. M. Hammer, “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics,” Opt. Commun. 235(4–6), 285–303 (2004). [CrossRef]
  31. OlympIOs Integrated Optics Software, http://www.c2v.nl/software/
  32. L. Agazzi, K. Wörhoff, A. Kahn, H. Scheife, G. Huber, and M. Pollnau are preparing a manuscript to be called “Microscopic treatment of energy-transfer upconversion and additional quenching mechanisms in rare-earth-ion-doped materials”.
  33. S. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, Washington, DC 2009), paper CTuC6. http://www.opticsinfobase.org/abstract.cfm?uri=CLEO-2009-CTuC6

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited