OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27846–27857

Azimuthons in weakly nonlinear waveguides of different symmetries

Yiqi Zhang, Stefan Skupin, Fabian Maucher, Arpa Galestian Pour, Keqing Lu, and Wieslaw Królikowski  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27846-27857 (2010)
http://dx.doi.org/10.1364/OE.18.027846


View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that weakly guiding nonlinear waveguides support stable propagation of rotating spatial solitons (azimuthons). We investigate the role of waveguide symmetry on the soliton rotation. We find that azimuthons in circular waveguides always rotate rigidly during propagation and the analytically predicted rotation frequency is in excellent agreement with numerical simulations. On the other hand, azimuthons in square waveguides may experience spatial deformation during propagation. Moreover, we show that there is a critical value for the modulation depth of azimuthons above which solitons just wobble back and forth, and below which they rotate continuously. We explain these dynamics using the concept of energy difference between different orientations of the azimuthon.

© 2010 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 18, 2010
Manuscript Accepted: November 16, 2010
Published: December 17, 2010

Citation
Yiqi Zhang, Stefan Skupin, Fabian Maucher, Arpa Galestian Pour, Keqing Lu, and Wieslaw Królikowski, "Azimuthons in weakly nonlinear waveguides of different symmetries," Opt. Express 18, 27846-27857 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27846


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Stegeman, and M. Segev, "Optical spatial solitons and their interactions: Universality and diversity," Science 286, 1518-1523 (1999). [CrossRef] [PubMed]
  2. A. S. Desyatnikov, A. A. Sukhorukov, and Y. S. Kivshar, "Azimuthons: Spatially modulated vortex solitons," Phys. Rev. Lett. 95, 203904 (2005). [CrossRef] [PubMed]
  3. P. Coullet, L. Gil, and F. Rocca, "Optical vortices," Opt. Commun. 73, 403-408 (1989). [CrossRef]
  4. V. M. Lashkin, "Two-dimensional multisolitons and azimuthons in Bose-Einstein condensates," Phys. Rev. A 77, 025602 (2008). [CrossRef]
  5. D. Buccoliero, A. S. Desyatnikov, W. Królikowski, and Y. S. Kivshar, "Spiraling multivortex solitons in nonlocal nonlinear media," Opt. Lett. 33, 198-200 (2008). [CrossRef] [PubMed]
  6. S. Lopez-Aguayo, A. S. Desyatnikov, and Y. S. Kivshar, "Azimuthons in nonlocal nonlinear media," Opt. Express 14, 7903-7908 (2006). [CrossRef] [PubMed]
  7. D. Buccoliero, A. S. Desyatnikov, W. Królikowski, and Y. S. Kivshar, "Laguerre and Hermite soliton clusters in nonlocal nonlinear media," Phys. Rev. Lett. 98, 053901 (2007). [CrossRef] [PubMed]
  8. A. Minovich, D. N. Neshev, A. S. Desyatnikov, W. Królikowski, and Y. S. Kivshar, "Observation of optical azimuthons," Opt. Express 17, 23610-23616 (2009). [CrossRef]
  9. V. I. Kruglov, Y. A. Logvin, and V. M. Volkov, "The theory of spiral laser beams in nonlinear media," J. Mod. Opt. 39, 2277-2291 (1992). [CrossRef]
  10. D. V. Skryabin, and W. J. Firth, "Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media," Phys. Rev. E 58, 3916-3930 (1998). [CrossRef]
  11. D. Suter, and T. Blasberg, "Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium," Phys. Rev. A 48, 4583-4587 (1993). [CrossRef] [PubMed]
  12. O. Bang, W. Królikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619 (2002). [CrossRef]
  13. W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, "Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media," J. Opt. B Quantum Semiclassical Opt. 6, S288-S294 (2004). [CrossRef]
  14. D. Briedis, D. Petersen, D. Edmundson, W. Królikowski, and O. Bang, "Ring vortex solitons in nonlocal nonlinear media," Opt. Express 13, 435-443 (2005). [CrossRef] [PubMed]
  15. S. Lopez-Aguayo, A. S. Desyatnikov, Y. S. Kivshar, S. Skupin, W. Królikowski, and O. Bang, "Stable rotating dipole solitons in nonlocal optical media," Opt. Lett. 31, 1100-1102 (2006). [CrossRef] [PubMed]
  16. S. Skupin, M. Grech, and W. Królikowski, "Rotating soliton solutions in nonlocal nonlinear media," Opt. Express 16, 9118-9131 (2008). [CrossRef] [PubMed]
  17. F. Maucher, D. Buccoliero, S. Skupin, M. Grech, A. S. Desyatnikov, and W. Krolikowski, "Tracking azimuthons in nonlocal nonlinear media," Opt. Quantum Electron. 41, 337-348 (2009). [CrossRef]
  18. M. Peccianti, K. A. Brzdkiewicz, and G. Assanto, "Nonlocal spatial soliton interactions in nematic liquid crystals," Opt. Lett. 27, 1460-1462 (2002). [CrossRef]
  19. C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003). [CrossRef] [PubMed]
  20. C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004). [CrossRef] [PubMed]
  21. R. Nath, P. Pedri, and L. Santos, "Soliton-soliton scattering in dipolar Bose-Einstein condensates," Phys. Rev. A 76, 013606 (2007). [CrossRef]
  22. V. M. Lashkin, E. A. Ostrovskaya, A. S. Desyatnikov, and Y. S. Kivshar, "Vector azimuthons in two-component Bose-Einstein condensates," Phys. Rev. A 80, 013615 (2009). [CrossRef]
  23. A. G. Litvak, V. Mironov, G. Fraiman, and A. Yunakovskii, "Thermal self-effect of wave beams in plasma with a nonlocal nonlinearity," Sov. J. Plasma Phys. 1, 31-37 (1975).
  24. C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, "Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons," Phys. Rev. Lett. 95, 213904 (2005). [CrossRef] [PubMed]
  25. S. Skupin, U. Peschel, L. Bergé, and F. Lederer, "Stability of weakly nonlinear localized states in attractive potentials," Phys. Rev. E 70, 016614 (2004). [CrossRef]
  26. R. W. Boyd, Nonlinear Optics (Academic Press, Amsterdam, 2008), 3rd ed.
  27. N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, "Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: Evidence of different damage mechanisms between 266-nm and longer wavelengths," Appl. Opt. 38, 2510-2515 (1999). [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Singapore, 2009), 4th ed.
  29. D. V. Skryabin, J. M. McSloy, and W. J. Firth, "Stability of spiraling solitary waves in Hamiltonian systems," Phys. Rev. E 66, 055602 (2002). [CrossRef]
  30. F. Maucher, S. Skupin, M. Shen, and W. Królikowski, "Rotating three-dimensional solitons in Bose-Einstein condensates with gravity like attractive nonlocal interaction," Phys. Rev. A 81, 063617 (2010). [CrossRef]
  31. Y. S. Kivshar, and D. K. Campbell, "Peierls-Nabarro potential barrier for highly localized nonlinear modes," Phys. Rev. E 48, 3077-3081 (1993). [CrossRef]
  32. In the linear system, any dipole orientation is possible, and can be constructed from orthogonal basis (D1,D2) by superposition.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (4060 KB)      QuickTime
» Media 2: AVI (4067 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited