OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27885–27890

Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide

Shiming Gao, En-Kuang Tien, Yuewang Huang, and Sailing He  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27885-27890 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate the bandwidth enhancement of wavelength conversion in a silicon waveguide based on four-wave mixing (FWM) with two continuous-wave pumps. Our measurement results show 25% bandwidth improvement from 29.8 nm to 37.4 nm in a 17-mm-long silicon waveguide with a pump spacing of 14.9 nm as compared to a single-pump FWM. The experimental results are verified by theoretical calculations and >40% bandwidth enhancement is predicted by further wavelength separation of the two pumps.

© 2010 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: November 10, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 6, 2010
Published: December 17, 2010

Shiming Gao, En-Kuang Tien, Yuewang Huang, and Sailing He, "Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide," Opt. Express 18, 27885-27890 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005). [CrossRef]
  2. R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006). [CrossRef]
  3. S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16(2), 557–559 (2004). [CrossRef]
  4. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006). [CrossRef]
  5. X. Sang and O. Boyraz, “Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,” Opt. Express 16(17), 13122–13132 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13122 . [CrossRef] [PubMed]
  6. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010). [CrossRef]
  7. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1182 . [CrossRef] [PubMed]
  8. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006). [CrossRef]
  9. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009). [CrossRef]
  10. X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009). [CrossRef]
  11. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4786 . [CrossRef] [PubMed]
  12. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4357 . [CrossRef] [PubMed]
  13. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood., “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33(24), 2889–2891 (2008). [CrossRef] [PubMed]
  14. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-1904 . [CrossRef] [PubMed]
  15. S. Gao, E.-K. Tien, Q. Song, Y. Huang, and O. Boyraz, “Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides,” Opt. Express 18(11), 11898–11903 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11898 . [CrossRef] [PubMed]
  16. J. S. Park, S. Zlatanovic, M. L. Cooper, J. M. Chavez-Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Two-pump four-wave mixing in silicon waveguides,” in Frontiers in Optics, OSA Tech. Dig., San Jose, CA, 2009, paper FML2.
  17. S. Gao, Z. Li, E.-K. Tien, S. He, and O. Boyraz, “Performance evaluation of nondegenerate wavelength conversion in a silicon nanowire waveguide,” J. Lightwave Technol. 28(21), 3079–3085 (2010).
  18. S. Gao, Z. Li, E.-K. Tien, Q. Liu, S. He, and O. Boyraz, “Broadband wavelength conversion by nondegenerate four-wave mixing in a silicon-on-insulator waveguide,” in Tech. Dig., Integr. Photon. Res. Conf., Monterey, CA, 2010, paper IWC2.
  19. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited