OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27891–27899

Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays

Chen-Han Huang, Hsing-Ying Lin, Ben-Chao Lau, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27891-27899 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.

© 2010 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(240.6680) Optics at surfaces : Surface plasmons
(260.5150) Physical optics : Photoconductivity
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: November 11, 2010
Revised Manuscript: December 9, 2010
Manuscript Accepted: December 15, 2010
Published: December 17, 2010

Chen-Han Huang, Hsing-Ying Lin, Ben-Chao Lau, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng, "Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays," Opt. Express 18, 27891-27899 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Berthold, R. A. Höpfel, and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible,” Appl. Phys. Lett. 46(7), 626–628 (1985). [CrossRef]
  2. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986). [CrossRef]
  3. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18(5), 373–375 (1993). [CrossRef] [PubMed]
  4. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006). [CrossRef]
  5. T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009). [CrossRef] [PubMed]
  6. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004). [CrossRef]
  7. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008). [CrossRef] [PubMed]
  8. P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag: Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003). [CrossRef]
  9. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004). [CrossRef]
  10. R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu: Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004). [CrossRef]
  11. M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010). [CrossRef]
  12. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005). [CrossRef] [PubMed]
  13. P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010). [CrossRef] [PubMed]
  14. M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009). [CrossRef]
  15. M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006). [CrossRef] [PubMed]
  16. C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008). [CrossRef] [PubMed]
  17. J. Yang, H. Lim, H. C. Choi, and H. S. Shin, “Wavelength-selective silencing of photocurrent in Au-coated C60 wire hybrid,” Chem. Commun. (Camb.) 46(15), 2575–2577 (2010). [CrossRef]
  18. I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010). [CrossRef]
  19. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  20. S. Shingubara, “Fabrication of nanomaterials using porous alumina templates,” J. Nanopart. Res. 5(1/2), 17–30 (2003). [CrossRef]
  21. W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006). [CrossRef] [PubMed]
  22. A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater. (Deerfield Beach Fla.) 11(6), 483–487 (1999). [CrossRef]
  23. A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template,” Mater. Chem. Phys. 91(2-3), 417–423 (2005). [CrossRef]
  24. T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010). [CrossRef] [PubMed]
  25. J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94(8), 4757–4762 (2003). [CrossRef]
  26. K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000). [CrossRef]
  27. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91(5), 3243–3247 (2002). [CrossRef]
  28. O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72(10), 1173–1175 (1998). [CrossRef]
  29. A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998). [CrossRef]
  30. J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991). [CrossRef]
  31. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010). [CrossRef] [PubMed]
  32. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006). [CrossRef] [PubMed]
  33. A. M. Goodman and A. Rose, “Double extraction of uniformly generated electron-hole pairs from insulators with noninjecting contacts,” J. Appl. Phys. 42(7), 2823–2830 (1971). [CrossRef]
  34. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008). [CrossRef]
  35. K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited