OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27930–27937

Photonic crystal slab sensor with enhanced surface area

Christopher Kang, Christopher T. Phare, Yurii A. Vlasov, Solomon Assefa, and Sharon M. Weiss  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27930-27937 (2010)
http://dx.doi.org/10.1364/OE.18.027930


View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we demonstrate improved molecular detection sensitivity for silicon slab photonic crystal cavities by introducing multiple-hole defects (MHDs), which increase the surface area available for label-free detection without degrading the quality factor. Compared to photonic crystals with L3 defects, adding MHDs into photonic crystal cavities enabled a 44% increase in detection sensitivity towards small refractive index perturbations due to surface monolayer attachment of a small aminosilane molecule. Also, photonic crystals with MHDs exhibited 18% higher detection sensitivity for bulk refractive index changes.

© 2010 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Sensors

History
Original Manuscript: November 23, 2010
Manuscript Accepted: December 9, 2010
Published: December 17, 2010

Citation
Christopher Kang, Christopher T. Phare, Yurii A. Vlasov, Solomon Assefa, and Sharon M. Weiss, "Photonic crystal slab sensor with enhanced surface area," Opt. Express 18, 27930-27937 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem. 77(21), 6976–6984 (2005). [CrossRef] [PubMed]
  2. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27(7), 512–514 (2002). [CrossRef]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002). [CrossRef]
  4. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005). [CrossRef]
  5. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  6. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009). [CrossRef] [PubMed]
  7. C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33(7), 708–710 (2008). [CrossRef] [PubMed]
  8. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1(3), 197–204 (2009). [CrossRef]
  9. R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993). [CrossRef]
  10. E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, and J. Greve, “The realization of an integrated mach-zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 (1997). [CrossRef]
  11. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998). [CrossRef]
  12. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996). [CrossRef] [PubMed]
  13. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998). [CrossRef] [PubMed]
  14. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  15. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  16. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  17. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007). [CrossRef] [PubMed]
  18. S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express 16(20), 15949–15957 (2008). [CrossRef] [PubMed]
  19. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004). [CrossRef] [PubMed]
  20. M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007). [CrossRef] [PubMed]
  21. D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008). [CrossRef]
  22. P. V. Lambeck, “Integrated opto-chemical sensors,” Sens. Actuators B Chem. 8(1), 103–116 (1992). [CrossRef]
  23. C. Kang and S. M. Weiss, “Photonic crystal defect tuning for optimized light-matter interaction,” Proc. SPIE 7031, 70310G (2008). [CrossRef]
  24. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16(22), 18188–18193 (2008). [CrossRef] [PubMed]
  25. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef] [PubMed]
  26. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  27. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756–6769 (1997), Erratum, ibid. 109, 4128 (1998).
  28. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  29. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  30. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited