OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27938–27954

Thermal blinding of gated detectors in quantum cryptography

Lars Lydersen, Carlos Wiechers, Christoffer Wittmann, Dominique Elser, Johannes Skaar, and Vadim Makarov  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27938-27954 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1370 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.

© 2010 Optical Society of America

OCIS Codes
(040.5570) Detectors : Quantum detectors
(270.5570) Quantum optics : Quantum detectors
(040.1345) Detectors : Avalanche photodiodes (APDs)
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: September 14, 2010
Revised Manuscript: November 17, 2010
Manuscript Accepted: December 13, 2010
Published: December 17, 2010

Virtual Issues
February 2, 2011 Spotlight on Optics

Lars Lydersen, Carlos Wiechers, Christoffer Wittmann, Dominique Elser, Johannes Skaar, and Vadim Makarov, "Thermal blinding of gated detectors in quantum cryptography," Opt. Express 18, 27938-27954 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in "Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing," (IEEE Press, New York, Bangalore, India, 1984), pp. 175-179.
  2. A. K. Ekert, "Quantum cryptography based on bell theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  3. H.-K. Lo, and H. F. Chau, "Unconditional security of quantum key distribution over arbitrarily long distances," Science 283, 2050-2056 (1999). [CrossRef] [PubMed]
  4. P. W. Shor, and J. Preskill, "Simple proof of security of the BB84 quantum key distribution protocol," Phys. Rev. Lett. 85, 441-444 (2000). [CrossRef] [PubMed]
  5. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, "High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres," N. J. Phys. 11, 075003 (2009). [CrossRef]
  6. Commercial QKD systems are available from at least two companies:I. D. Quantique, (Switzerland), http://www.idquantique.comQ. Magi, Technologies (USA), http://www.magiqtech.com.
  7. D. Mayers, "Advances in cryptology," in "Proceedings of Crypto’96," vol. 1109, N. Koblitz, ed. (Springer, New York, 1996), vol. 1109, pp. 343-357.
  8. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).
  9. H. Inamori, N. Lütkenhaus, and D. Mayers, "Unconditional security of practical quantum key distribution," Eur. Phys. J. D 41, 599-627 (2007). [CrossRef]
  10. C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, "Security proof of quantum key distribution with detection efficiency mismatch," Quantum Inf. Comput. 9, 131-165 (2009).
  11. L. Lydersen and J. Skaar, "Security of quantum key distribution with bit and basis dependent detector flaws," Quantum Inf. Comput. 10, 0060 (2010).
  12. Ø. Marøy, L. Lydersen, and J. Skaar, "Security of quantum key distribution with arbitrary individual imperfections," Phys. Rev. A 82, 032337 (2010). [CrossRef]
  13. A. Vakhitov, V. Makarov, and D. R. Hjelme, "Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography," J. Mod. Opt. 48, 2023-2038 (2001).
  14. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, "Trojan-horse attacks on quantum-key-distribution systems," Phys. Rev. A 73, 022320 (2006). [CrossRef]
  15. V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006). [CrossRef]
  16. V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems: erratum," Phys. Rev. A 78, 019905 (2008).
  17. V. Makarov, and J. Skaar, "Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols," Quantum Inf. Comput. 8, 0622 (2008).
  18. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, "Time-shift attack in practical quantum cryptosystems," Quantum Inf. Comput. 7, 73-82 (2007).
  19. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, "Quantum hacking: Experimental demonstration of time shift attack against practical quantum-key-distribution systems," Phys. Rev. A 78, 042333 (2008). [CrossRef]
  20. A. Lamas-Linares, and C. Kurtsiefer, "Breaking a quantum key distribution system through a timing side channel," Opt. Express 15, 9388-9393 (2007). [CrossRef] [PubMed]
  21. S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, "Information leakage via side channels in free space BB84 quantum cryptography," N. J. Phys. 11, 065001 (2009). [CrossRef]
  22. C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, "Phase-remapping attack in practical quantum-key-distribution systems," Phys. Rev. A 75, 032314 (2007). [CrossRef]
  23. F. Xu, B. Qi, and H.-K. Lo, "Experimental demonstration of phase-remapping attack in a practical quantum key distribution system," N. J. Phys. 12, 113026 (2010). [CrossRef]
  24. Precisely, the quantum bit error rate (QBER) is the fraction given by the number of bits which differ in Alice’s and Bob’s raw key, divided by the length of the raw key.
  25. H. F. Chau, "Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate," Phys. Rev. A 66, 060302 (2002). [CrossRef]
  26. D. Gottesman, and H.-K. Lo, "Proof of security of quantum key distribution with two-way classical communications," IEEE Trans. Inf. Theory 49, 457-475 (2003). [CrossRef]
  27. V. Makarov, "Controlling passively quenched single photon detectors by bright light," N. J. Phys. 11, 065003 (2009). [CrossRef]
  28. V. Makarov, A. Anisimov, and S. Sauge, "Quantum hacking: adding a commercial actively-quenched module to the list of single-photon detectors controllable by Eve," e-print arXiv:0809.3408v2 [quant-ph].
  29. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, "Hacking commercial quantum cryptography systems by tailored bright illumination," Nat. Photonics 4, 686-689 (2010). [CrossRef]
  30. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, "After-gate attack on a quantum cryptosystem," e-print arXiv:1009.2683 [quant-ph].
  31. I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, "Perfect eavesdropping on a quantum cryptography system," e-print arXiv:1011.0105 [quant-ph].
  32. I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Appl. Phys. Lett. 89, 101122 (2006). [CrossRef]
  33. M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, "Daylight operation of a free space, entanglement-based quantum key distribution system," N. J. Phys. 11, 045007 (2009). [CrossRef]
  34. Z. L. Yuan, J. F. Dynes, and A. J. Shields, "Avoiding the detector blinding attack on quantum cryptography," Nat. Photonics 4, 800-801 (2010). [CrossRef]
  35. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).
  36. All references to the APD bias voltage are absolute valued, thus an APD biased "above" the breakdown voltage is in the Geiger mode. In practice the APDs are always reverse-biased.
  37. V. Makarov, and D. R. Hjelme, "Faked states attack on quantum cryptosystems," J. Mod. Opt. 52, 691-705 (2005). [CrossRef]
  38. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004). [CrossRef] [PubMed]
  39. W.-Y. Hwang, "Quantum key distribution with high loss: Toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  40. X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  41. H.-K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  42. S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981). [CrossRef]
  43. D. S. Bethune, and W. P. Risk, "An auto compensating fiber-optic quantum cryptography system based on polarization splitting of light," IEEE J. Quantum Electron. 36, 340-347 (2000). [CrossRef]
  44. A. Tomita, and K. Nakamura, "Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm," Opt. Lett. 27, 1827-1829 (2002). [CrossRef]
  45. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007). [CrossRef]
  46. Osterm, PE4-115-14-15, http://osterm.ru/PAGE/MULTISTAGE.HTM, visited 3. August 2010.
  47. When the temperature increases, the lattice vibrations in the APD increase. This increases the probability that the electron collides with the lattice, and therefore reduces the probability that the electron gains enough energy to trigger ionization of a new electron-hole pair. Therefore, to ensure that the electron gains ionization energy, the electric field must be larger, and thus the breakdown voltage is increased.
  48. S. M. Sze, and K. K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007).
  49. Marlow, NL4012, http://www.marlow.com/media/marlow/product/downloads/nl4012t/NL4012.pdf, visited 3. August 2010.
  50. The detectors do not have any dark counts and are assumed blind at a temperature of about −40◦C at the cold plate, or when the bias voltage is decreased by 0.97V. If one assumes that the APD temperature is equal to the cold plate temperature, this means that heating the detectors by 10K is equivalent to decreasing the bias voltage by about 1V.
  51. G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, "Automated ‘plug & play’ quantum key distribution," Electron. Lett. 34, 2116-2117 (1998). [CrossRef]
  52. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," N. J. Phys. 4, 41 (2002). [CrossRef]
  53. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  54. S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov. in preparation.
  55. G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, "Fast and user-friendly quantum key distribution," J. Mod. Opt. 47, 517-531 (2000).
  56. The system actually sends the qubits in frames of 1075 qubits each. We initially made a mistake when counting them and used 1072 qubits, which is very close and does not affect the results.
  57. We picked the second bit to simplify synchronization in our measurement setup. The results for the first bit should be very similar to the results for the second bit.
  58. S. L. Braunstein, and P. van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77, 513-577 (2005). [CrossRef]
  59. U. L. Andersen, G. Leuchs, and C. Silberhorn, "Continuous-variable quantum information processing," Laser Photon. Rev. 4, 337 (2010), ArXiv:1008.3468v1 [quant-ph]. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited