OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 1854–1871

Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization

Hao Gao and Hongkai Zhao  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 1854-1871 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we study an l1-regularized multilevel approach for bioluminescence tomography based on radiative transfer equation with the emphasis on improving imaging resolution and reducing computational time. Simulations are performed to validate that our algorithms are potential for efficient high-resolution imaging. Besides, we study and compare reconstructions with boundary angular-averaged data, boundary angular-resolved data and internal angular-averaged data respectively.

© 2010 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 12, 2009
Revised Manuscript: November 18, 2009
Manuscript Accepted: January 2, 2010
Published: January 15, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Hao Gao and Hongkai Zhao, "Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization," Opt. Express 18, 1854-1871 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging 16(4), 378–387 (2002). [CrossRef] [PubMed]
  2. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
  3. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004). [CrossRef] [PubMed]
  4. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006). [CrossRef] [PubMed]
  5. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005). [CrossRef] [PubMed]
  6. G. Wang, X. Qian, W. Cong, H. Shen, Y. Li, W. Han, K. Durairaj, M. Jiang, T. Zhou, J. Cheng, J. Tian, Y. Lv, H. Li, and J. Luo, “Recent development in bioluminescence tomography,” Current Medical Imaging Reviews 2(4), 453–457 (2006). [CrossRef]
  7. G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multi-view and multi-spectral data,” Int. J. Biomed. Imaging 2006, 1–8 (2006). [CrossRef]
  8. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, “Three-dimensional bioluminescence tomography with model-based reconstruction,” Opt. Express 12(17), 3996–4000 (2004). [CrossRef] [PubMed]
  9. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005). [CrossRef] [PubMed]
  10. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006). [CrossRef] [PubMed]
  11. C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, “Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system,” Mol. Imaging 4, 370 (2005).
  12. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  13. Y. Lv, J. Tian, W. Cong, and G. Wang, “Experimental study on bioluminescence tomography with multimodality fusion,” Int. J. Biomed. Imaging 2007, 86741 (2007). [CrossRef]
  14. K. M. Case, and P. F. P. F. Zweifel, Linear Transport Theory (Addison-Wesley Educational Publishers Inc., 1967).
  15. S. Chandrasekhar, Radiative Transfer (Dover Publications, 1960).
  16. E. E. Lewis, and W. F. Miller, Computational Methods of Neutron Transport (Wiley, 1984).
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).
  18. H. Gao and H. K. Zhao, “A fast forward solver of radiative transfer equation,” Transp. Theory Stat. Phys. 38(3), 149–192 (2009). [CrossRef]
  19. A. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  20. E. J. Candes and M. B. Wakin, “A introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008). [CrossRef]
  21. D. Donoho, “Compresse sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). [CrossRef]
  22. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006). [CrossRef]
  23. E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). [CrossRef]
  24. E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005). [CrossRef]
  25. E. J. Candes and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). [CrossRef]
  26. P. Zhao and B. Yu, “On model selection consistency of Lasso,” J. Mach. Learn. Res. 7, 2541–2563 (2006).
  27. R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc., B 58, 267–288 (1996).
  28. Y. Zhang, “Theory of compressive sensing via l1-minimization: a non-RIP analysis and extensions,” Rice University CAAM Technical Report TR08–11, (2008).
  29. G. Bal and A. Tamasan, “Inverse source problems in transport equations,” SIAM J. Math. Anal. 39(1), 57–76 (2007). [CrossRef]
  30. A. Charette, J. Boulanger, and H. K. Kim, “An overview on recent radiation transport algorithm development for optical tomography imaging,” J. Quant. Spectrosc. Radiat. Transf. 109(17-18), 2743–2766 (2008). [CrossRef]
  31. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005). [CrossRef]
  32. V. Markel and J. Schotland, “Fourier-laplace structure of the linearized inverse scattering problem for the radiative transport equation,” Inv. Prob. Imag. 1, 181–189 (2007). [CrossRef]
  33. N. J. McCormick, “Inverse radiative transfer problems: a review,” Nucl. Sci. Eng. 112, 185–198 (1992).
  34. A. N. Panchenko, “Inverse source problem of radiative transfer: a special case of the attenuated Radon transform,” Inverse Probl. 9(2), 321–337 (1993). [CrossRef]
  35. C. E. Siewert, “An inverse source problem in radiative transfer,” J. Quant. Spectrosc. Radiat. Transf. 50(6), 603–609 (1993). [CrossRef]
  36. P. Stefanov and G. Uhlmann, “An inverse source problem in optical molecular imaging,” Analysis and PDE 1, 115–126 (2008). [CrossRef]
  37. Z. Tao, N. J. McCormick, and R. Sanchez, “Ocean source and optical property estimation from explicit and implicit algorithms,” Appl. Opt. 33(15), 3265 (1994). [CrossRef] [PubMed]
  38. R. Weissleder and U. U. Mahmood, “Molecular imaging,” Radiology 219(2), 316–333 (2001). [PubMed]
  39. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17(10), 8062–8080 (2009). [CrossRef] [PubMed]
  40. M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati, “Analysis of the depth resolution limit of luminescence diffuse optical imaging,” Opt. Lett. 33(20), 2290–2292 (2008). [CrossRef] [PubMed]
  41. K. Levenberg, “A method for the solution of certain nonlinear problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).
  42. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963). [CrossRef]
  43. K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for Non-linear Least Squares Problems (Technical University of Denmark, 1999).
  44. S. Boyd, and L. Vandenberghe, Convex Optimization (Cambridge university press, 2004).
  45. S. J. Kim, K. Koh, M. Lustig, and S. Boyd, “An efficient method for compressed sensing,” IEEE International Conference on Image Processing 3, 117–120 (2007).
  46. S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An Interior-Point Method for Large-Scale l1-Regularized Least Squares,” IEEE J. Sel. Top. Signal Process. 1(4), 606–617 (2007). [CrossRef]
  47. W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative algorithms for l1-minimization with applications to compressed sensing,” SIAM J. Imaging Sciences 1(1), 143–168 (2008). [CrossRef]
  48. Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, “A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation,” Rice University CAAM Technical Report TR09–01, (2009).
  49. E. Esser, X. Zhang, and T. Chan, “A general framework for a class of first order primal-dual algorithms for TV minimization,” UCLA CAM Report 09–67, (2009).
  50. T. Goldstein and S. Osher, “The split bregman method for l1 regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009). [CrossRef]
  51. S. Osher, Y. Mao, B. Dong, and W. Yin, “Fast linearized Bregman iteration for compressed sensing and sparse denoising,” Commun. Math. Sci. (to be published).
  52. J. Yang, Y. Zhang, and W. Yin, “An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise,” SIAM J. Sci. Comput. 31(4), 2842–2865 (2009). [CrossRef]
  53. J. Demmel, Applied Numerical Linear Algebra (Cambidge Univ. Press, 1997).
  54. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14(3), 504–514 (1995). [CrossRef] [PubMed]
  55. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101–1-041101–22 (2006). [CrossRef]
  56. H. Gao, and H. Zhao, “A multilevel and multigrid optical tomography based on radiative transfer equation,” in Proceedings of SPIE (Munich, Germany, 2009), pp. 73690E–1-73690E–10.
  57. Y. Lv, J. Tian, W. X. Cong, G. Wang, J. Luo, W. Yang, H. Li, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited