OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 1888–1897

Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs

Te-Wen Kuo, Wei-Ren Liu, and Teng-Ming Chen  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 1888-1897 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A series of alkaline earth borophosphate phosphors, (Ba,Sr)3BP3O12 doped with Eu2+ ions, were synthesized by a solid state reaction. Two emission bands at 465 nm and 520 nm were attributed to the f–d transitions of doped Eu2+ ions occupying in two different cation sites in host lattices and emission color variation was observed by substituting the M2+ sites, which was rationalized in terms of two competing factors of the crystal field strength and bond covalence. Green and bluish-white pc-LEDs were fabricated by combination of a 370 nm near-UV chip and composition-optimized Ba3BP3O12:Eu2+ and (Ba,Sr)3BP3O12:Eu2+ phosphors, respectively. The series of phosphors may serve as a promising green and bluish-white luminescent materials used in fabrication of near UV-based white pc-LEDs.

© 2010 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:

Original Manuscript: November 6, 2009
Revised Manuscript: December 26, 2009
Manuscript Accepted: December 27, 2009
Published: January 15, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Te-Wen Kuo, Wei-Ren Liu, and Teng-Ming Chen, "Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs," Opt. Express 18, 1888-1897 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phys. Chem. Solids 65(5), 845–850 (2004). [CrossRef]
  2. R. Mueller-Mach and G. O. Mueller, “White-light-emitting diodes for illumination,” Proc. SPIE 3938, 30–41 (2000). [CrossRef]
  3. H. Wu, X. M. Zhang, C. F. Guo, J. Xu, M. M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17(6), 1160–1162 (2005). [CrossRef]
  4. K. Murakami, T. Taguchi, and M. Yoshino, “White illumination characteristics of ZnS-based phosphor materials excited by InGaN-based ultraviolet light-emitting diode,” Proc. SPIE-Int. Soc. Opt. Eng. 4079, 112–119 (2000).
  5. Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, “Optical Properties of Three-Band White Light Emitting Diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003). [CrossRef]
  6. R. Kniep, H. Engelhardt, and C. Hauf, “A First Approach to Borophosphate Structural Chemistry,” Chem. Mater. 10(10), 2930–2934 (1998). [CrossRef]
  7. G. Blasse, A. Bril, and J. De Vries, “Luminescence of alkaline-earth borate-phosphates activated with divalent europium,” J. Inorg. Nucl. Chem. 31(2), 568–570 (1969). [CrossRef]
  8. A. Karthikeyani and R. Jagannatan, “Eu2+ luminescence in stillwellite-type SrBPO5− a new potential X-ray storage phosphor,” J. Lumin. 86(1), 79–85 (2000). [CrossRef]
  9. Q. Su, H. B. Liang, T. Hu, Y. Tao, and T. Liu, “Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+,” J. Alloy. Comp. 344(1-2), 132–136 (2002). [CrossRef]
  10. P. Dorenbos, “Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds,” J. Lumin. 104(4), 239–260 (2003). [CrossRef]
  11. R. Kniep, G. Gözel, B. Eisenmann, C. Röhr, M. Asbrand, and M. Kizilyalli,, “Borophosphates–A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII = Ca, Sr) and Ba3[BP3012],” Angew. Chem. Int. Ed. Engl. 33(7), 749–751 (1994). [CrossRef]
  12. Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, and G. Rao, “Crystal Structure and Thermal Decomposition Studies of Barium Borophosphate, BaBPO5,” J. Solid State Chem. 135(1), 43–51 (1998). [CrossRef]
  13. Y. Shi, J. Liang, J. Yang, W. Zhuang, and G. Rao, “Subsolidus phase relations in the system BaO-B2O3-P2O5,” J. Alloy. Comp. 261(1-2), L1–L3 (1997). [CrossRef]
  14. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).
  15. L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc. 114(10), 1048–1053 (1967). [CrossRef]
  16. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953). [CrossRef]
  17. W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20(8), 2061–2066 (2005). [CrossRef]
  18. J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, “Optical and Structural Properties of Eu2+-doped (Sr1–xBax)2SiO4 phosphors,” J. Electron. Soc. 152(9), H135–H137 (2005). [CrossRef]
  19. N. K. Davidenko, and K. B. Yatsimirskii, Theoretical and Experimental Chemistry (New York: Springer), p505 (1973).
  20. K. H. Bulter, Fluorescent Lamp Phosphors, The Pennsylvania State University Press, University Park, PA (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited