OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 1898–1903

Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion

Oleg Mitrofanov and James A. Harrington  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 1898-1903 (2010)
http://dx.doi.org/10.1364/OE.18.001898


View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thin dielectric layers deposited on the inner surface of hollow cylindrical metallic waveguides for Terahertz (THz) waves reduce transmission losses below 1 dB/m. Impact of the dielectric layer on the waveguide dispersion is experimentally investigated by near-field mapping of guided short THz pulses at the input and the output of the waveguide. We obtain dispersion characteristics for the low-loss waveguide modes, the linearly-polarized HE11 mode and the TE01 mode, and compare the experimental results to the metallic waveguide dispersion. The additional dispersion due to the dielectric layer is found to be small for the HE11 mode and the phase velocity is primarily determined by the waveguide radius.

© 2010 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(320.0320) Ultrafast optics : Ultrafast optics
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Optical Devices

History
Original Manuscript: November 10, 2009
Revised Manuscript: December 4, 2009
Manuscript Accepted: December 5, 2009
Published: January 15, 2010

Citation
Oleg Mitrofanov and James A. Harrington, "Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion," Opt. Express 18, 1898-1903 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-1898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007). [CrossRef] [PubMed]
  2. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008). [CrossRef]
  3. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  4. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009). [CrossRef] [PubMed]
  5. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984). [CrossRef]
  6. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009). [CrossRef] [PubMed]
  7. J. W. Carlin and P. D’Agostino, “Normal Modes in Overmoded Dielectric-Lined Circular Waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).
  8. C. Dragone, “Attenuation and Radiation Characteristics of the HE11 Mode,” IEEE Trans. Microw. Theory Tech. 28(7), 704–710 (1980). [CrossRef]
  9. C. Themistos, B. M. A. Rahman, M. Rajarajan, K. T. V. Grattan, B. Bowden, and J. A. Harrington, “Characterization of silver/polystyrene-coated hollow glass waveguides at THz frequency,” J. Lightwave Technol. 25(9), 2456–2462 (2007). [CrossRef]
  10. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009). [CrossRef]
  11. N. C. J. van der Valk and P. C. M. Planken, “Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires,” Appl. Phys. Lett. 87(7), 071106 (2005). [CrossRef]
  12. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009). [CrossRef] [PubMed]
  13. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008). [CrossRef]
  14. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008). [CrossRef]
  15. O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7(4), 600–607 (2001). [CrossRef]
  16. O. Mitrofanov, I. Brener, M. Wanke, R. R. Ruel, J. D. Wynn, A. J. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77(4), 591–593 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited