OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2049–2055

Remote control of light behavior by transformation optical devices

Zixian Liang, Xulin Lin, and Xunya Jiang  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2049-2055 (2010)
http://dx.doi.org/10.1364/OE.18.002049


View Full Text Article

Enhanced HTML    Acrobat PDF (648 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the transformation optics, a general method of light-behavior remote control is proposed. From this method, the important coefficients of a cavity, i.e. the quality factor Q and the resonant frequency ω0 could be tuned in a wide range by a transformation optical device in distance, so that the light behavior can be remotely controlled. To confirm this original idea, three schemes, such as, the remote modification of output energy current from an absorptive cavity, the remote control of lasing behaviors, and the remote tuning of the resonant frequency or photonic band-gap, are presented and confirmed by our numerical simulations based on finite-difference time-domain and finite-element methods. With some special advantages, e.g., without physical change or damage of original devices, large tuning range, and easily to hide the controller, this method could be widely used in optical/photonic or electromagnetic designs in the future.

© 2010 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.2710) Physical optics : Inhomogeneous optical media
(230.3205) Optical devices : Invisibility cloaks
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Physical Optics

History
Original Manuscript: December 7, 2009
Revised Manuscript: January 9, 2010
Manuscript Accepted: January 9, 2010
Published: January 19, 2010

Citation
Zixian Liang, Xulin Lin, and Xunya Jiang, "Remote control of light behavior by transformation optical devices," Opt. Express 18, 2049-2055 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, INC. 1991). [CrossRef]
  2. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  4. S. A. Cummer, B.-I Popa, D. Schurig, and D. R. Smith, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006). [CrossRef]
  5. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, "Cloaking of MatterWaves," Phys. Rev. Lett. 100, 123002 (2008). [CrossRef] [PubMed]
  6. D. A. Genov, S. Zhang and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Physics 5, 687-692 (2009). [CrossRef]
  7. P. Yao, Z. Liang, and X. Jiang, "Limitation of the electromagnetic cloak with dispersive material," Appl. Phys. Lett. 92, 031111 (2008). [CrossRef]
  8. H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, "Extending the bandwidth of electromagnetic cloaks," Phys. Rev. B 76, 241104(R) (2007). [CrossRef]
  9. H. Chen, and C. T. Chan, "Time delays and energy transport velocities in three dimensional ideal cloaking devices," J. Appl. Phys. 104, 033113 (2008). [CrossRef]
  10. Z. Liang, P. Yao, X. Sun, and X. Jiang, "The physical picture and the essential elements of the dynamical process for dispersive cloaking structures," Appl. Phys. Lett. 92, 131118 (2008). [CrossRef]
  11. B. Zhang, B. I. Wu, and H. Chen, "Optical delay of a signal through a dispersive invisibility cloak," Opt. Express 17, 6721-6726 (2009). [CrossRef] [PubMed]
  12. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  13. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband Ground-Plane Cloak," Science 323, 366-369 (2009). [CrossRef] [PubMed]
  14. J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-571 (2009). [CrossRef]
  15. Q2. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 224-227 (2007). [CrossRef]
  16. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  17. H. Chen, and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett. 90, 241105 (2007). [CrossRef]
  18. D. H. Kwon and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Opt. Express 16, 18731-18738 (2008). [CrossRef]
  19. T. Yang, H. Chen, X. Luo, and H. Ma, "Superscatterer: Enhancement of scattering with complementary media," Opt. Express 16, 18545-18550 (2008). [CrossRef] [PubMed]
  20. H. Chen, X. Luo, H. Ma, C. T. Chan, "The Anti-Cloak," Opt. Express 16, 14603-14608 (2008). [CrossRef] [PubMed]
  21. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, "Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell," Phys. Rew. Lett. 102, 093901 (2009). [CrossRef]
  22. G. Zheng, X. Heng, and C. Yang, "A phase conjugate mirror inspired approach for building cloaking structures with left-handed materials," New J. Phys. 11, 033010 (2009). [CrossRef]
  23. J. Ng, H. Chen, C. T. Chan, "Metamaterial frequency-selective superabsorber," Opt. Lett. 34, 644-646 (2009). [CrossRef] [PubMed]
  24. J. Zhang, Y. Luo, H. Chen, J. Huangfu, B. I. Wu, L. Ran, and J. A. Kong, "Guiding waves through an invisible tunnel," Opt. Express 17, 6203-6208 (2009). [CrossRef] [PubMed]
  25. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rew. Lett. 85, 3966 (2000). [CrossRef]
  26. J. B. Pendry and S. A. Ramakrishna, "Near-eld lenses in two dimensions," J. Phys.: Condens. Matter 148463-8479 (2002). [CrossRef]
  27. J. B. Pendry and S. A. Ramakrishna, "Focusing light using negative refraction," J. Phys.: Condens. Matter 156345-6364 (2003). [CrossRef]
  28. U. Leonhardt and T. G. Philbin, "General relativity in electrical engineering," New J. Phys. 8, 247 (2006). [CrossRef]
  29. X. Jiang and C. M. Soukoulis, "Time Dependent Theory for Random Lasers," Phys. Rev. Lett. 85, 70 (2000). [CrossRef] [PubMed]
  30. Y. Lai, J. Ng, H. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, "Illusion Optics: The Optical Transformation of an Object into Another Object," Phys. Rew. Lett. 102, 253902 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited