OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2100–2105

In-line monitoring technique with visible light from 1.3 μm-band SHG module for optical access systems

Takahiro Kubo, Tomohiro Taniguchi, Osamu Tadanaga, Naoya Sakurai, Hideaki Kimura, Hisaya Hadama, and Masaki Asobe  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2100-2105 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an in-line monitoring technique that uses 650 nm visible light for performing maintenance work on Fiber-to-the-home (FTTH) network quickly without the need for measuring skills or external devices. This technique is characterized by visible light (650 nm) generated by an SHG module from the 1.3 μm-band line signal. We fabricate a 1.3 μm-band quasi phase matched LiNbO3 (QPM-LN) module, and the measure the 650 nm second harmonic (SH) power to test the proposed short-pulse modulation method. The results confirm the feasibility of the short-pulse modulation method with different peak factors (PFs) (1.0-7.3). We also examine the effect of short-pulse modulation on system performance at the optical receiver by measuring the bit error rate (BER) of received data (1.25 Gb/s). The BER is basically unaffected by the PF (1.0-5.5). This means that the proposed technique has little influence on data reception as regards PF (1.0-5.5).

© 2010 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4510) Fiber optics and optical communications : Optical communications
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 2, 2009
Revised Manuscript: December 25, 2009
Manuscript Accepted: January 6, 2010
Published: January 19, 2010

Takahiro Kubo, Tomohiro Taniguchi, Osamu Tadanaga, Naoya Sakurai, Hideaki Kimura, Hisaya Hadama, and Masaki Asobe, "In-line monitoring technique with visible light from 1.3 μm-band SHG module for optical access systems," Opt. Express 18, 2100-2105 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Natsume, K. Suzuki, and Y. Kozawa, “Fiber Identification Technique for Bending Insensitive Optical Fiber,” The International Wire & Cable Symposium, 359–362 (2007).
  2. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004). [CrossRef]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  4. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-Assisted Fiber Design for Small Bending and Splice Losses,” Photon. Technol. Lett. 15(12), 1737–1739 (2003). [CrossRef]
  5. ITU-T Recommendation G983 series.
  6. T. Kubo, T. Taniguchi, O. Tadanaga, N. Sakurai, H. Kimura, K. Kumozaki, and M. Asobe, “In-Line Monitoring Technique with Visible Light for Optical Access Systems by Using 1.3 μm-Band QPM-LN Module,” The 14th OptoElectronics and Communication Conference, WH5 (2009).
  7. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN Ridge Waveguide with High Damage Resistance at Room Temperature,” Electron. Lett. 39(7), 609–611 (2003). [CrossRef]
  8. K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide,” J. Quantum Electron. 28(9), 1909–1914 (1992). [CrossRef]
  9. J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, “Visible Laser Sources Based on Frequency Doubling in Nonlinear Waveguides,” J. Quantum Electron. 33(10), 1673–1686 (1997). [CrossRef]
  10. K. Sakai, Y. Koyata, S. Itakura, and Y. Hirano, “High-Power, Highly Efficient Second-Harmonic Generation in a Periodically Poled MgO:LiNbO3 Planar Waveguide,” J. Lightwave Technol. 27(5), 590–596 (2009). [CrossRef]
  11. P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of Residual Chromatic Dispersion of a 40-Gb/s RZ Signal via Spectral Broadening,” Photon. Technol. Lett. 14(3), 346–348 (2002). [CrossRef]
  12. T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005). [CrossRef] [PubMed]
  13. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited