OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2106–2115

Controllable optical black hole in left-handed materials

Qiang Bai, Jing Chen, Nian-Hai Shen, Chen Cheng, and Hui-Tian Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2106-2115 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (6569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Halting and storing light by infinitely decelerating its speed, in the absence of any form of external control, is extremely difficult to imagine. Here we present a theoretical prediction of a controllable optical black hole composed of a planar left-handed material slab. We reveal a criterion that the effective round-trip propagation length in one zigzag path is zero, which brings light to a complete standstill. Both theory and ab initio simulation demonstrate that this optical black hole has flexible controllability for the speed of light. Surprisingly, the ab initio simulations reveal that our scheme has flexible controllability for swallowing, holding, and releasing light.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(260.2110) Physical optics : Electromagnetic optics
(260.6970) Physical optics : Total internal reflection
(350.3618) Other areas of optics : Left-handed materials

ToC Category:
Physical Optics

Original Manuscript: October 26, 2009
Revised Manuscript: December 28, 2009
Manuscript Accepted: December 28, 2009
Published: January 19, 2010

Qiang Bai, Jing Chen, Nian-Hai Shen, Chen Cheng, and Hui-Tian Wang, "Controllable optical black hole in left-handed materials," Opt. Express 18, 2106-2115 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Weiss, "Black hole recipe: Slow light, swirl atoms," Science News 157, 86-87 (2000). [CrossRef]
  2. U. Leonhardt and P. Piwnicki, "Relativistic erects of light in moving media with extremely low group velocity," Phys. Rev. Lett. 84, 822-825 (2000). [CrossRef] [PubMed]
  3. A. L. Gaeta, "Slow light: Putting the brakes on images," Nature Photonics 1, 140-141 (2007). [CrossRef]
  4. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, \All-optical delay of images using slow light," Phys. Rev. Lett. 98, 043902 (2007). [CrossRef] [PubMed]
  5. D. J. Gauthier, "Optical communications: solitons go slow," Nat. Photonics  1, 92-93 (2007). [CrossRef]
  6. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nat. Phys.  2,775-780 (2006). [CrossRef]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature  397, 594-598 (1999). [CrossRef]
  8. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses, " Nature 409, 490-493 (2001). [CrossRef] [PubMed]
  9. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett.  86, 783-786 (2001). [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid, " Science 301, 200-202 (2003). [CrossRef] [PubMed]
  11. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  12. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  13. Q. F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys . 3, 406-410 (2007). [CrossRef]
  14. M. F. Yanik and S. H. Fan, "Slow light: dynamic photon storage," Nat. Phys. 3, 372-374 (2007). [CrossRef]
  15. S. Sandhu, M. L. Povinelli, and S. H. Fan, "Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines," Opt. Lett. 32, 3333-3335 (2007). [CrossRef] [PubMed]
  16. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 522995232 (1999). [CrossRef]
  17. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002). [CrossRef] [PubMed]
  18. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  19. K. Lee and N. M. Lawandy, "Optically induced pulse delay in a solid-state Raman amplifier," Appl. Phys. Lett.  78, 703-705 (2001). [CrossRef]
  20. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  21. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and Marin Solja·ci "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  22. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling," Phys. Rev. Lett. 91, 083902 (2003). [CrossRef] [PubMed]
  23. G. Q. Zhang, F. Bo, R. Dong, and J. J. Xu, "Phase-coupling-induced ultraslow light propagation in solids at room temperature," Phys. Rev. Lett. 93, 133903 (2004). [CrossRef] [PubMed]
  24. A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, "Slowing down of Light in photorefractive crystals with beam intensity coupling reduced to zero," Phys. Rev. Lett. 93, 243604 (2004). [CrossRef]
  25. Q. G. Yang, J. T. Seo, B. Tabibi, and H. T. Wang, "Slow light and superluminality in Kerr media without a pump," Phys. Rev. Lett. 95, 063902 (2005). [CrossRef] [PubMed]
  26. V. G. Veselago, "The electrodynamics of substance with simultaneously negative value of e and m," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  27. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  28. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett.  85, 3966-3969 (2000). [CrossRef] [PubMed]
  29. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  30. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "`Trapped rainbow' storage of light in meta-materials," Nature 450, 397-401 (2007). We also touched a similar issue. Our work was brie°y reported in the autumn meeting of Chinese Physical Society on Sep. 18-20, 2007. [CrossRef] [PubMed]
  31. K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006). [CrossRef]
  32. G. D'Aguanno, N. Mattiucci, and M. J. Bloemer, "Ultraslow light pulse in a nonlinear metama-terial," J. Opt. Soc. Am. B 25, 1236-1241 (2008). [CrossRef]
  33. Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Phys. Rev. A 77, 063836 (2008). [CrossRef]
  34. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar,"Guided modes in negative-refractive-index waveguides," Phys. Rev. E 67, 057602 (2003). [CrossRef]
  35. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a `fast-light' optical medium," Nature 425, 695-698 (2003). [CrossRef] [PubMed]
  36. D. K. Qing and G. Chen, "Goos-HÄanchen shifts at the interfaces between left- and right-handed media," Opt. Lett. 29, 872-874 (2004). [CrossRef] [PubMed]
  37. L. G. Wang and S. Y. Zhu, "Large negative lateral shifts from the Kretschmann-Raether configuration with left-handed materials," Appl. Phys. Lett. 87, 221102 (2005). [CrossRef]
  38. A. Reza, M. M. Dignam, and S. Hughes," Can light be stopped in realistic metamaterials?," Nature 455, E10-E11 (2008). [CrossRef]
  39. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "Can light be stopped in realistic metamate-rials? Reply," Nature 455, E11-E12 (2008). [CrossRef]
  40. K. J. Webb and L. Thyl¶en, "Perfect-lens-material condition from adjacent absorptive and gain resonances," Opt. Lett. 33, 747-749 (2008). [CrossRef] [PubMed]
  41. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, "Self-consistent calculation of metama-terials with gain," Phys. Rev. B 79, 241104(R) (2009). [CrossRef]
  42. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental obser-vation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett. 98, 157403 (2007). [CrossRef] [PubMed]
  43. J. KÄastel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, "Tunable negative refraction without absorption via electromagnetically induced chirality," Phys. Rev. Lett. 99, 073602 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited