OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2127–2136

Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths

Ehsan Shah Hosseini, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2127-2136 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High quality (Q ≈ 6 × 105) microdisk resonators are demonstrated in a Si3N4 on SiO2 platform at 652–660 nm with integrated in-plane wrap-around coupling waveguides to enable critical coupling to specific microdisk radial modes. Selective coupling to the first three radial modes with >20dB suppression of the other radial modes is achieved by controlling the wrap-around waveguide width. Advantages of such pulley-coupled microdisk resonators include single mode operation, ease of fabrication due to larger waveguide-resonator gaps, the possibility of resist reflow during the lithography phase to improve microdisk etched surface quality, and the ability to realize highly over-coupled microdisks suitable for low-loss delay lines and add-drop filters.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: November 6, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 15, 2010
Published: January 19, 2010

Ehsan Shah Hosseini, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi, "Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths," Opt. Express 18, 2127-2136 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities." Appl. Opt. 40, 570-582 (2001). [CrossRef]
  2. A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007). [CrossRef] [PubMed]
  3. F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nat. Methods 5, 591-596 (2008). [CrossRef] [PubMed]
  4. T. Barwicz, M. Popovi’c, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis." Opt. Express 12, 1437-1442 (2004). [CrossRef] [PubMed]
  5. J. Hryniewicz, P. Absil, B. Little, R. Wilson, and P. Ho, "Higher order filter response in coupled microring resonators," IEEE Photon. Technol. Lett. 12, 320-322 (2000). [CrossRef]
  6. P. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiN microdisks with atom chips," Appl. Phys. Lett. 89, 131108 (2006). [CrossRef]
  7. M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics." Opt. Express 15, 4694-4704 (2007). [CrossRef] [PubMed]
  8. D. Jeanmaire and R. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977). [CrossRef]
  9. E. C. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects (Elsevier, 2008).
  10. E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005). [CrossRef]
  11. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range," Opt. Express 17, 14543-14551 (2009). [CrossRef] [PubMed]
  12. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000). [CrossRef]
  13. M. Chin and S. Ho, "Design and Modeling of Waveguide-Coupled Single-Mode Microring Resonators," J. Lightwave Technol. 16, 1433-1446 (1998). [CrossRef]
  14. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing," Opt. Lett. 33, 2500-2502 (2008). [CrossRef] [PubMed]
  15. S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987). [CrossRef]
  16. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, 1999). [PubMed]
  17. C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  18. M. Soltani, "Novel integrated silicon nanophotonic structures using ultra-high Q resonators," Ph.D. thesis, Georgia Institute of Technology (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited