OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2197–2208

Plasmonic mode-gap waveguides using hetero-metal films

Sangjun Lee and Sangin Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2197-2208 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1607 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel waveguide structure using a hetero-metal film which is composed of two metals of different plasma frequencies. In the proposed waveguide, a long-range surface plasmon-polariton (LR-SPP) mode in the central metal film of a higher plasma frequency are horizontally confined since no propagation mode is allowed in the outer films of a lower plasma frequency for a certain frequency range which is dubbed a plasmonic mode-gap (PMG). The propagation characteristics of the proposed PMG waveguide are numerically analyzed. The proposed waveguide shows tight horizontal confinement close to the diffraction limit and notable suppression of radiation loss in bendings due to the PMG effect. It seems that the PMG guiding can improve integration densities of optical devices based on the LR-SPPs without exacerbating their propagation losses.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

Original Manuscript: December 15, 2009
Revised Manuscript: January 8, 2010
Manuscript Accepted: January 11, 2010
Published: January 19, 2010

Sangjun Lee and Sangin Kim, "Plasmonic mode-gap waveguides using hetero-metal films," Opt. Express 18, 2197-2208 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Boardman, Electromagnetic Surface Modes (Wiley Interscience, 1982).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442–2446 (2004). [CrossRef]
  4. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  5. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]
  6. K. Tanaka and M. Tanaka, “Simulation of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  7. B. Wang and G. P. Wang, “Metal hterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85(16), 3599–3601 (2004). [CrossRef]
  8. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005). [CrossRef]
  9. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005). [CrossRef] [PubMed]
  10. F. Kusunoki, T. Yotsuya, and J. Takahara, “Confinement and guiding of two-dimensional optical waves by low-refractive-index cores,” Opt. Express 14(12), 5651–5656 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5651 . [CrossRef] [PubMed]
  11. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66(3), 035403 (2002). [CrossRef]
  12. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-977 . [CrossRef] [PubMed]
  13. R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003). [CrossRef]
  14. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2365 . [CrossRef] [PubMed]
  15. G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994). [CrossRef]
  16. S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14(9), 2085–2092 (1996). [CrossRef]
  17. S. J. Al-Bader and H. A. Jamid, “Perfectly matched layer absorbing boundary conditions for the method of lines modeling scheme,” IEEE Microw. Guid. Wave Lett. 8(11), 357–359 (1998). [CrossRef]
  18. R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid Wave Lett. 5(3), 84–86 (1995). [CrossRef]
  19. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  20. J. D. Joannopoulos, R. D. Meade, and I. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  21. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005). [CrossRef]
  22. A. Hosseini, A. Nieuwoudt, and Y. Massoud, “Optimizing dielectric strips over a metallic substrate for subwavelength light confinement,” IEEE Photon. Technol. Lett. 19(7), 522–524 (2007). [CrossRef]
  23. S. Lee, S. Kim, and H. Lim, “Improved bending loss characteristics of asymmetric surface plasmonic waveguides for flexible optical wiring,” Opt. Express 17(22), 19435–19443 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19435 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited