OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2309–2316

Particle size dependence of the dynamic photophysical properties of NaYF4:Yb, Er nanocrystals

Shuang Fang Lim, William S. Ryu, and Robert H. Austin  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2309-2316 (2010)
http://dx.doi.org/10.1364/OE.18.002309


View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of the nanocrystal size on the emission spectra and decay rates of upconverting hexagonal NaYF4:Yb,Er nanocrystals are investigated. The influence of nanocrystal size is represented in terms of the surface area/volume ratio (SA/Vol). Our results show that a small nanocrystal size, or large SA/Vol ratio increases the decay rate, in particular, the green luminescence decay rate varies linearly with the SA/Vol ratio.

© 2010 OSA

OCIS Codes
(160.0160) Materials : Materials
(160.2540) Materials : Fluorescent and luminescent materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Materials

History
Original Manuscript: October 26, 2009
Revised Manuscript: December 14, 2009
Manuscript Accepted: December 15, 2009
Published: January 21, 2010

Citation
Shuang Fang Lim, William S. Ryu, and Robert H. Austin, "Particle size dependence of the dynamic photophysical properties of NaYF4:Yb, Er nanocrystals," Opt. Express 18, 2309-2316 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2309


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Bloembergen, “Solid State Infrared Quantum Counters,” Phys. Rev. Lett. 2(3), 84–85 (1959). [CrossRef]
  2. F. Auzel, “Compteur Quantique Par Transfert Denergie Entre Deux Ions De Terres Rares Dans Un Tungstate Mixte Et Dans Un Verre,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B 262(15), 1016-& (1966).
  3. M. R. Brown, H. Thomas, J. M. Williams, and R. J. Woodward, “Experiments on Er3+ in SrF2. III. Coupled-Ion Effects,” J. Chem. Phys. 51(8), 3321 (1969). [CrossRef]
  4. F. Auzel, “Spectral Narrowing of Excitation-Spectra in N-Photons Upconversion Processes by Energy Transfers,” J. Lumin. 31–32(DEC), 759–761 (1984). [CrossRef]
  5. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56(15), 9302–9318 (1997). [CrossRef]
  6. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002). [CrossRef]
  7. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, and A. C. Tropper, “Frequency upconversion in Tm- and Yb:Tm-doped silica fibers,” Opt. Commun. 78(2), 187–194 (1990). [CrossRef]
  8. J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, “The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors,” J. Phys. Chem. B 105(5), 948–953 (2001). [CrossRef]
  9. X. Qin, T. Yokomori, and Y. G. Ju, “Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors,” Appl. Phys. Lett. 90(7), 073104 (2007). [CrossRef]
  10. F. van de Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke, “Up-converting phosphor reporters for nucleic acid microarrays,” Nat. Biotechnol. 19(3), 273–276 (2001). [CrossRef] [PubMed]
  11. S. A. Blanton, A. Dehestani, P. C. Lin, and P. Guyot-Sionnest, “Photoluminescence of single semiconductor nanocrystallites by two-photon excitation microscopy,” Chem. Phys. Lett. 229(3), 317–322 (1994). [CrossRef]
  12. J. R. Lakowicz, I. Gryczynski, G. Piszczek, and C. J. Murphy, “Emission Spectral Properties of Cadmium Sulfide Nanoparticles with Multiphoton Excitation,” J. Phys. Chem. B 106(21), 5365–5370 (2002). [CrossRef]
  13. A. G. Joly, W. Chen, D. E. McCready, J.-O. Malm, and J.-O. Bovin, “Upconversion luminescence of CdTe nanoparticles,” Phys. Rev. B 71(16), 165304 (2005). [CrossRef]
  14. X. Wang, W. W. Yu, J. Zhang, J. Aldana, X. Peng, and M. Xiao, “Photoluminescence upconversion in colloidal CdTe quantum dots,” Phys. Rev. B 68(12), 125318 (2003). [CrossRef]
  15. W. Chen, A. G. Joly, and D. E. McCready, “Upconversion luminescence from CdSe nanoparticles,” J. Chem. Phys. 122(22), 224708 (2005). [CrossRef] [PubMed]
  16. Z. Y. Chen, M. G. Mauk, J. Wang, W. R. Abrams, P. Corstjens, R. S. Niedbala, D. Malamud, and H. H. Bau, “A microfluidic system for saliva-based detection of infectious diseases,” Oral-Based Diagnostics 1098, 429–436 (2007).
  17. M. Zuiderwijk, H. J. Tanke, R. Sam Niedbala, and P. L. Corstjens, “An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology,” Clin. Biochem. 36(5), 401–403 (2003). [CrossRef] [PubMed]
  18. P. Corstjens, M. Zuiderwijk, A. Brink, S. Li, H. Feindt, R. S. Niedbala, and H. Tanke, “Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: A rapid, sensitive DNA test to identify human papillomavirus type 16 infection,” Clin. Chem. 47(10), 1885–1893 (2001). [PubMed]
  19. J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005). [CrossRef]
  20. L. Y. Wang and Y. D. Li, “Green upconversion nanocrystals for DNA detection,” Chemical Communications (24), 2557–2559 (2006).
  21. K. Kuningas, T. Rantanen, U. Karhunen, T. Lövgren, and T. Soukka, “Simultaneous use of time-resolved fluorescence and anti-stokes photoluminescence in a bioaffinity assay,” Anal. Chem. 77(9), 2826–2834 (2005). [CrossRef] [PubMed]
  22. G. S. Yi, H. C. Lu, S. Y. Zhao, G. Yue, W. J. Yang, D. P. Chen, and L. H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004). [CrossRef]
  23. A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the Properties of Up-Conversion Phosphors for New Emissive Displays,” Journal of Display Technology 2(1), 68–78 (2006). [CrossRef]
  24. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, and H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005). [CrossRef]
  25. M. J. Dejneka, A. Streltsov, S. Pal, A. G. Frutos, C. L. Powell, K. Yost, P. K. Yuen, U. Müller, and J. Lahiri, “Rare earth-doped glass microbarcodes,” Proc. Natl. Acad. Sci. U.S.A. 100(2), 389–393 (2003). [CrossRef] [PubMed]
  26. J. P. Jouart, C. Bissieux, and G. Mary, “Energy-Transfer Upconversion in CdF2:Er3+ and SrxCd1-xF2:Er3+,” J. Lumin. 29(3), 261–274 (1984).
  27. R. Brede, E. Heumann, J. Koetke, T. Danger, G. Huber, and B. Chai, “Green up-Conversion Laser-Emission in Er-Doped Crystals at Room-Temperature,” Appl. Phys. Lett. 63(15), 2030–2031 (1993). [CrossRef]
  28. Y. H. Wang and J. Ohwaki, “High-Efficiency Infrared-to-Visible up-Conversion of Er3+ in BaCl2,” J. Appl. Phys. 74(2), 1272–1278 (1993). [CrossRef]
  29. G. M. Salley, R. Valiente, and H. U. Guedel, “Luminescence upconversion mechanisms in Yb3+-Tb3+ systems,” J. Lumin. 94(2-4), 305–309 (2001). [CrossRef]
  30. K. W. Krämer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, and S. R. Luthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004). [CrossRef]
  31. H. U. Güdel and M. Pollnau, “Near-infrared to visible photon upconversion processes in lanthanide doped chloride, bromide and iodide lattices,” J. Alloy. Comp. 303(1-2), 307–315 (2000). [CrossRef]
  32. N. Menyuk, J. W. Pierce, and K. Dwight, “NaYF4:Yb,Er - Efficient Upconversion Phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972). [CrossRef]
  33. J. W. Pierce, E. J. Delaney, K. Dwight, and N. Menyuk, “Preparation of Infrared to Visible Upconversion Phosphors Based on Hexagonal NaYF4,” Abstracts of Papers of the American Chemical Society 164, 18 (1972).
  34. J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006). [CrossRef] [PubMed]
  35. H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006). [CrossRef] [PubMed]
  36. G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb,Er and NaYF4: Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006). [CrossRef]
  37. S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16(23–24), 2102–2105 (2004). [CrossRef]
  38. J. N. Shan and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91(12), 123103–123105 (2007). [CrossRef]
  39. J. Shan and Y. Ju, “A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb, Er upconversion nanophosphors,” Nanotechnology 20(27), 275603 (2009). [CrossRef] [PubMed]
  40. H. Song, L. Yu, S. Lu, T. Wang, Z. Liu, and L. Yang, “Remarkable differences in photoluminescent properties between LaPO4:Eu one-dimensional nanowires and zero-dimensional nanoparticles,” Appl. Phys. Lett. 85(3), 470–472 (2004). [CrossRef]
  41. G. J. De, W. P. Qin, J. S. Zhang, Y. Wang, C. Y. Cao, and Y. Cui, “Effect of OH- on the upconversion luminescent efficiency of Y2O3: Yb3+, Er3+ nanostructures,” Solid State Commun. 137(9), 483–487 (2006). [CrossRef]
  42. J. F. Suyver, J. Grimm, K. W. Kramer, and H. U. Gudel, “Highly efficient near-infrared to visible up-conversion process in NaYF4: Er3+,Yb3+,” J. Lumin. 114(1), 53–59 (2005). [CrossRef]
  43. X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong, Q. L. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007). [CrossRef]
  44. A. B. Kutsenko, J. Heber, S. E. Kapphan, R. Demirbilek, and R. I. Zakharchenya, “Energy migration and energy transfer processes in RE3+ doped nanocrystalline yttrium oxide,” Phys. Status Solidi 2(1), 685–688 (2005). [CrossRef]
  45. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Wet chemical synthesis and luminescence properties of erbium-doped nanocrystalline yttrium oxide,” J. Mater. Res. 19(11), 3398–3407 (2004). [CrossRef]
  46. H. W. Song, H. P. Xia, B. J. Sun, S. Z. Lu, Z. X. Liu, and L. X. Yu, “Upconversion luminescence dynamics in Er3+/Yb3+ codoped nanocrystalline yttria,” Chin. Phys. Lett. 23(2), 474–477 (2006). [CrossRef]
  47. S. Schietinger, L. S. Menezes, B. Lauritzen, and O. Benson, “Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ Codoped NaYF4 nanocrystals,” Nano Lett. 9(6), 2477–2481 (2009). [CrossRef] [PubMed]
  48. X. Y. Chen, H. Z. Zhuang, H. Z. G. K. Liu, S. Li, and R. S. Niedbala, “Confinement on energy transfer between luminescent centers in nanocrystals,” J. Appl. Phys. 94(9), 5559 (2003). [CrossRef]
  49. M. Wermuth, T. Riedener, and H. U. Gudel, “Spectroscopy and upconversion mechanisms of CsCdBr3: Dy3+,” 57, 4369–4376 (1998).
  50. D. Matsuura, “Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002). [CrossRef]
  51. Y. Lei, H. Song, L. Yang, L. Yu, Z. Liu, G. Pan, X. Bai, and L. Fan, “Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+,Yb3+ nanowires,” J. Chem. Phys. 123(17), 174710–174714 (2005). [CrossRef] [PubMed]
  52. M. Liu, S. W. Wang, J. Zhang, L. Q. An, and L. D. Chen, “Dominant red emission (4F9/2-> 4I15/2) via upconversion in YAG (Y3Al5O12): Yb3+, Er3+ nanopowders,” Opt. Mater. 29(11), 1352–1357 (2007). [CrossRef]
  53. F. Zhang, J. Li, J. Shan, L. Xu, and D. Zhao, “Shape, Size, and Phase-Controlled Rare-Earth Fluoride Nanocrystals with Optical Up-Conversion Properties,” Chemistry 15(41), 11010–11019 (2009). [CrossRef] [PubMed]
  54. S. Chen, M. Wu, L. An, Y. Li, and S. Wang, “Strong Green and Red Upconversion Emission in Er3+- Doped Na1/2Bi1/2TiO3 Ceramics,” J. Am. Ceram. Soc. 90(2), 664–666 (2007). [CrossRef]
  55. G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, D. Zhang, and F. Ding, “Synthesis and upconversion luminescence properties of NaYF4:Yb3+/Er3+ microspheres,” J. Rare Earths 27(3), 394–397 (2009). [CrossRef]
  56. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000). [CrossRef]
  57. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 4
 
Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited