OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2332–2338

AlxGa1-xAs nested waveguide heterostructures for continuously phase-matched terahertz difference frequency generation

C. M. Staus, T. F. Kuech, and L. McCaughan  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2332-2338 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We previously demonstrated a nested pair of single mode (pump/THz) waveguides which produced guided far-infrared (1.3 THz) light with a record power-normalized conversion efficiency of 1.3x10−7 W−1 by way of continuous phase matched difference frequency generation (DFG) [Opt. Express 16, 13296 (2008)]. Using the same numerical simulation tools we used to design and model this LiNbO3-based device, we show that a lattice-matched AlGaAs heterostructure, with its significantly lower absorption losses, can produce guided far-infrared light (3.5 THz) with a power-normalized conversion efficiency of 1.3 x 10−5 W−1 – some 100 times larger than achieved with the LiNbO3 structure.

© 2010 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.4223) Nonlinear optics : Nonlinear wave mixing
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Nonlinear Optics

Original Manuscript: November 19, 2009
Revised Manuscript: January 9, 2010
Manuscript Accepted: January 11, 2010
Published: January 21, 2010

C. M. Staus, T. F. Kuech, and L. McCaughan, "AlxGa1-xAs nested waveguide heterostructures for continuously phase-matched terahertz difference frequency generation," Opt. Express 18, 2332-2338 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Staus, T. F. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16(17), 13296–13303 (2008). [CrossRef] [PubMed]
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  3. D. E. Thompson and P. D. Coleman, “Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides,” IEEE Trans, MTT 22(12), 995–1000 (1974). [CrossRef]
  4. Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference frequency generation of THz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007). [CrossRef] [PubMed]
  5. W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004). [CrossRef]
  6. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20(4), 595–604 (1999). [CrossRef]
  7. M. R. Brozel, and G. E. Stillman, Properties of Gallium Arsenide, Datareviews Series 16 (The Institution of Electrical Engineers, London, United Kingdom, 1996).
  8. H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980). [CrossRef]
  9. S. Adachi, Properties of Aluminum Gallium Arsenide, Datareviews Series 7 (The Institution of Electrical Engineers, London, United Kingdom, 1996).
  10. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006). [CrossRef]
  11. C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008). [CrossRef]
  12. S. Adachi, “GaAs, AlAs and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985). [CrossRef]
  13. T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, Germany, 1990).
  14. E. Palik, ed., Handbook of Optical Constants of Solids, (Academic Press, Orlando, FL, (1985).
  15. Y. R. Shen, Nonlinear Infrared Generation, (Springer-Verlag, Berlin Heidelberg, 1977).
  16. J. S. Blakemore, “Mid-infrared dispersion of the refractive index of and reflectivity for GaAs,” J. Appl. Phys. 62(11), 4528 (1987). [CrossRef]
  17. D. N. Nikogosyan, Properties of Optical and Laser-related Materials, (Wiley, Chichester, 1997), p. 333.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 2 Fig. 1 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited