OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2368–2379

Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle

Sarah C. Irvine, David M. Paganin, R. Aidan Jamison, Stephen Dubsky, and Andreas Fouras  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2368-2379 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a time-resolved tomographic reconstruction of the velocity field associated with pulsatile blood flow through a rotationally-symmetric stenotic vessel model. The in-vitro sample was imaged using propagation-based phase contrast with monochromated X-rays from a synchrotron undulator source, and a fast shutter-synchronized detector with high-resolution used to acquire frames of the resulting dynamic speckle pattern. Having used phase retrieval to decode the phase contrast from the speckle patterns, the resulting projected-density maps were analysed using the statistical correlation methods of particle image velocimetry (PIV). This yields the probability density functions of blood-cell displacement within the vessel. The axial velocity-field component of the rotationally-symmetric flow was reconstructed using an inverse-Abel transform. A modified inverse-Abel transform was used to reconstruct the radial component. This vector tomographic phase-retrieval velocimetry was performed over the full pumping cycle, to completely characterize the velocity field of the pulsatile blood flow in both space and time.

© 2010 OSA

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(110.6960) Imaging systems : Tomography
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(340.7440) X-ray optics : X-ray imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 3, 2009
Manuscript Accepted: December 24, 2009
Published: January 21, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Sarah C. Irvine, David M. Paganin, R. Aidan Jamison, Stephen Dubsky, and Andreas Fouras, "Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle," Opt. Express 18, 2368-2379 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Beiersdorfer, C. M. Lisse, R. E. Olson, G. V. Brown, and H. Chen, “X-ray velocimetry of solar wind ion impact on comets,” Astrophys. J. 549(1), L147–L150 (2001). [CrossRef]
  2. M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (2nd edition) (Springer, Berlin, 2007).
  3. A. Fouras, D. Lo Jacono, and K. Hourigan, “Target-free Stereo PIV: a novel technique with inherent error estimation and improved accuracy,” Exp. Fluids 44(2), 317–329 (2008). [CrossRef]
  4. A. Fouras, D. Lo Jacono, C. V. Nguyen, and K. Hourigan, “Volumetric correlation PIV: a new technique for 3D velocity vector field measurement,” Exp. Fluids 47(4–5), 569–577 (2009). [CrossRef]
  5. S. J. Lee and G. B. Kim, “X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects,” J. Appl. Phys. 94(5), 3620 (2003). [CrossRef]
  6. A. Seeger, K. Affeld, L. Goubergrits, E. Wellnhofer, and U. Kertzscher, “X-ray-based assessment of the three-dimensional velocity of the liquid phase in a bubble column,” Exp. Fluids 31(2), 193–201 (2001). [CrossRef]
  7. A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009). [CrossRef]
  8. S. D. Shpilfoygel, R. A. Close, D. J. Valentino, and G. R. Duckwiler, “X-ray videodensitometric methods for blood flow and velocity measurement: a critical review of literature,” Med. Phys. 27(9), 2008–2023 (2000). [CrossRef] [PubMed]
  9. S. J. Lee and G. B. Kim, “Synchrotron microimaging technique for measuring the velocity fields of real blood flows,” J. Appl. Phys. 97(6), 064701 (2005). [CrossRef]
  10. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996). [CrossRef]
  11. S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008). [CrossRef]
  12. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002). [CrossRef] [PubMed]
  13. A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys. 102(6), 064916 (2007). [CrossRef]
  14. S. Dubsky, R. A. Jamison, S. C. Irvine, K. K. W. Siu, K. Hourigan, and A. Fouras, “Computed tomographic X-ray velocimetry,” Appl. Phys. Lett. 96(2), 023702 (2010). [CrossRef]
  15. D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, New York, 2006).
  16. S. R. Deans, “Radon and Abel transforms”, in The Transforms and Applications Handbook: Second Edition. (CRC Press, Boca Raton, 2000).
  17. T. E. Gureyev, A. W. Stevenson, D. M. Paganin, T. Weitkamp, A. Snigirev, I. Snigireva, and S. W. Wilkins, “Quantitative analysis of two-component samples using in-line hard X-ray images,” J. Synchrotron Radiat. 9(3), 148–153 (2002). [CrossRef] [PubMed]
  18. S. C. Irvine, Time-Resolved Imaging of Objects with X-rays, (Internal Report, Monash University, 2007).
  19. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  20. M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004). [CrossRef] [PubMed]
  21. J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” J. Physiol. 127(3), 553–563 (1955). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (20 KB)     
» Media 2: AVI (8685 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited