OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2549–2557

Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters

Ning Da, Mingying Peng, Sebastian Krolikowski, and Lothar Wondraczek  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2549-2557 (2010)
http://dx.doi.org/10.1364/OE.18.002549


View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on intense red fluorescence from Mn2+-doped sulfophosphate glasses and glass ceramics of the type ZnO-Na2O-SO3-P2O5. As a hypothesis, controlled internal crystallization of as-melted glasses is achieved on the basis of thermally-induced bimodal separation of an SO3-rich phase. Crystal formation is then confined to the relict structure of phase separation. The whole synthesis procedure is performed in air at ≤ 800 °C. Electron spin resonance and Raman spectroscopy indicate that Mn2+ species are incorporated on Zn2+ sites with increasingly ionic character for increasing concentration. Correspondingly, in the glasses, increasing MnO content results in decreasing network polymerization. Stable glasses and continuously increasing emission intensity are observed for relatively high dopant concentration of up to 3 mol.%. Recrystallization of the glass results in strongly increasing emission intensity. Dynamic emission spectroscopy reveals only on type of emission centers in the glassy material, whereas three different centers are observed in the glass ceramic. These are attributed to octahedrally coordinated Mn2+ in the residual glass phase and in crystalline phosphate and sulfate lattices, respectively. Relatively low crystal field strength results in almost ideal red emission, peaking around 625 nm. Excitation bands lie in the blue-to-green spectral range and exhibit strong overlap. The optimum excitation range matches the emission properties of GaN- and InGaN-based light emitting devices.

© 2010 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials

ToC Category:
Materials

History
Original Manuscript: November 17, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 16, 2010
Published: January 22, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Citation
Ning Da, Mingying Peng, Sebastian Krolikowski, and Lothar Wondraczek, "Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters," Opt. Express 18, 2549-2557 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Reisfeld, A. Kisilev, and C. K. Jorgensen, “Luminescence of manganese(II) in 24 phosphate glasses,” Chem. Phys. Lett. 111(1-2), 19–24 (1984). [CrossRef]
  2. B. Sudhakar Reddy, N. O. Gopal, K. V. Narasimhulu, C. Linga Raju, J. L. Rao, and B. C. V. Reddy, “EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals,” J. Mol. Struct. 751(1-3), 161–167 (2005). [CrossRef]
  3. I. E. C. MacHado, L. Prado, L. Gomes, J. M. Prison, and J. R. Martinelli, “Optical properties of manganese in barium phosphate glasses,” J. Non-Cryst. Solids 348, 113–117 (2004). [CrossRef]
  4. M. C. Flores J, U. Caldino G, J. Hernández A, E. Camarillo G, E. Cabrera B, H. del Castillo, A. Speghini, M. Bettinelli, and H. Murrieta S, “Study of Mn2+ luminescence in Zn(PO3)2 glasses,” Phys. Status Solidi C 4(3), 922–925 (2007). [CrossRef]
  5. S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2--new red phosphor for white LEDs,” Opt. Lett. 33(23), 2865–2867 (2008). [CrossRef] [PubMed]
  6. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009). [CrossRef] [PubMed]
  7. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009). [CrossRef] [PubMed]
  8. L. Wondraczek and P. Pradeau, “Transparent hafnia-containing β-quartz glass ceramics: nucleation and crystallization behavior,” J. Am. Ceram. Soc. 91(6), 1945–1951 (2008). [CrossRef]
  9. L. Wondraczek, H. Behrens, Y. Yue, J. Deubener, and G. W. Scherer, “Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass,” J. Am. Ceram. Soc. 90(5), 1556–1561 (2007). [CrossRef]
  10. J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985).
  11. A. J. Faber, A. van Die, G. Blasse, and F. van der Weg, “Luminescence of manganese of different valencies in oxide glasses,” Phys. Chem. Glasses 28, 150–155 (1987).
  12. V. B. Mikhailik, “VUV sensitization of Mn2+ emission by Tb3+ in strontium aluminate phosphor,” Mater. Lett. 63(9-10), 803–805 (2009). [CrossRef]
  13. C. Sumalatha, B. Sreedhar, M. Yamazaki, and K. Kojima, “Electron paramagnetic resonance and optical absorption spectra of Mn(II) ions in silica sol-gel,” Phys. Chem. Glasses 38, 206–210 (1997).
  14. J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, and K. Hirao, “Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser,” Appl. Phys. Lett. 79(22), 3567–3569 (2001). [CrossRef]
  15. H. W. de Wijn and R. F. van Balderen, “Electron Spin Resonance of Manganese in Borate Glasses,” J. Chem. Phys. 46(4), 1381–1387 (1967). [CrossRef]
  16. D. L. Griscom and R. E. Griscom, “Paramagnetic Resonance of Mn2+ in Glasses and Compounds of the Lithium Borate System,” J. Chem. Phys. 47(8), 2711–2722 (1967). [CrossRef]
  17. J. S. van Wieringen, “Paramagnetic resonance of divalent manganese incorporated in various lattices,” Discuss. Faraday Soc. 19, 118–126 (1955). [CrossRef]
  18. B. Vaidhyanathan, C. Prem Kumar, J. L. Rao, and K. J. Rao, “Spectroscopic investigations of manganese ions in microwave-prepared NaPO3—PbO glasses,” J. Phys. Chem. Solids 59(1), 121–128 (1998). [CrossRef]
  19. C. R. Ronda and T. Amrein, “Evidence for exchange-induced luminescence in Zn2SiO4:Mn,” J. Lumin. 69(5-6), 245–248 (1996). [CrossRef]
  20. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000). [CrossRef]
  21. E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “A vibrational study of lithium sulfate based fast ionic conducting borate glasses,” J. Phys. Chem. 90(19), 4528–4533 (1986). [CrossRef]
  22. M. Ganguli and K. J. Rao, “Studies of ternary Li2SO4–Li2O–P2O5 glasses,” J. Non-Cryst. Solids 243(2-3), 251–267 (1999). [CrossRef]
  23. K. J. Rao and H. G. K. Sundar, “Electrical conductivity studies in K2SO4-Na2SO4-ZnSO4 glasses and the mixed alkali effect,” Phys. Chem. Glasses 21, 216–220 (1980).
  24. W. Höland, and G. H. Beall, “Glass ceramic technology,” American Ceramic Society, Westerville, OH, USA, 2002.
  25. F. N. Su and Z. Deng, “Influence of chemical environment on the optical properties in transition metal ions doped materials,” J. Fluoresc. 16(1), 43–46 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited