OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2579–2587

Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures

Mark W. Knight, Jonathan Fan, Federico Capasso, and Naomi J. Halas  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2579-2587 (2010)
http://dx.doi.org/10.1364/OE.18.002579


View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dark field microspectroscopy is the primary method for the study of plasmon modes of individual metallic nanostructures. Light from a plasmonic nanostructure typically scatters with a strong angular and modal dependence, resulting in significant variations in the observed spectral response depending on excitation and collection angle and polarization of incident light. Here we examine how spectrally dependent radiation patterns arising from an individual plasmonic nanoparticle, positioned on a dielectric substrate, affect the detection of its plasmon modes. Careful consideration of excitation and collection geometry is of critical concern in quantitative studies of the optical response of these nanoparticle systems.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.0260) Physical optics : Physical optics
(290.5820) Scattering : Scattering measurements
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 16, 2009
Revised Manuscript: January 5, 2010
Manuscript Accepted: January 11, 2010
Published: January 22, 2010

Citation
Mark W. Knight, Jonathan Fan, Federico Capasso, and Naomi J. Halas, "Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures," Opt. Express 18, 2579-2587 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2579


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  2. L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006).
  3. U. Kreibig, and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995).
  4. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Phot. 1(3), 438–483 (2009). [CrossRef]
  5. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18(17), 1949–1960 (2008). [CrossRef] [PubMed]
  6. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004). [CrossRef]
  7. S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lermé, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009). [CrossRef]
  8. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009). [CrossRef] [PubMed]
  9. C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000). [CrossRef]
  10. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  11. J. J. Mock, M. Barbic, D. R. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002). [CrossRef]
  12. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003). [CrossRef]
  13. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000). [CrossRef] [PubMed]
  14. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003). [CrossRef]
  15. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007). [CrossRef] [PubMed]
  16. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009). [CrossRef] [PubMed]
  17. R. Ruppin, “Optical absorption of a coated sphere above a substrate,” Physica A 178(1), 195–205 (1991). [CrossRef]
  18. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991). [CrossRef]
  19. C. Beitia, Y. Borensztein, R. Lazzari, J. Nieto, and R. G. Barrera, “Substrate-induced multipolar resonances in supported free-electron metal spheres,” Phys. Rev. B 60(8), 6018–6022 (1999). [CrossRef]
  20. F. Moreno, F. González, and J. M. Saiz, “Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates,” Opt. Lett. 31(12), 1902–1904 (2006). [CrossRef] [PubMed]
  21. E. Eremina, Y. Eremin, and T. Wriedt, “Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method,” Opt. Commun. 267(2), 524–529 (2006). [CrossRef]
  22. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998). [CrossRef]
  23. B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24(24), 14166–14171 (2008). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  25. J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, and D. Spemann, “Optical properties of ZnSe and Zn0.87Mn0.13Se epilayers determined by spectroscopic ellipsometry,” Thin Solid Films 455–456, 228–230 (2004). [CrossRef]
  26. J. A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941).
  27. R. Juškaitis, “Characterizing high numerical aperture microscope objective lenses,” in Optical Imaging and Microscopy, 2 ed., P. Török and F.-J. Kao, eds. (Springer, Berlin, 2007), pp. 21–43.
  28. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited