OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2588–2600

Interaction of light with a metal wedge: the role of diffraction in shaping energy flow

Yonggang Xi, Yun Suk Jung, and Hong Koo Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2588-2600 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When a light wave hits a metal wedge structure, the metal surfaces respond to the incident light by generating both free-space and surface-bound waves. Here we present a physical model that elucidates electromagnetic interactions of an incoming planar wave with a simple semi-infinite 90° metal wedge. We show that a metal wedge structure possesses an intrinsic capability of directing the incident power around the corner into the forward direction. Interplay of the boundary diffraction wave and the incident and reflection waves in the near field region of a metal corner is found to form a basis of the funneling phenomena that are commonly observed in metal nanoslit structures. Theory and experiment reveal that the incident wave propagating parallel to the sidewall destructively interferes with the boundary diffraction wave forming a depleted-energy-flow region along the glancing angle direction. A physical understanding of various electromagnetic phenomena associated with a metal wedge structure confirms rich potential of the simple structure as an elemental building block of complex metal nanostructures.

© 2010 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1960) Diffraction and gratings : Diffraction theory
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Diffraction and Gratings

Original Manuscript: December 21, 2009
Revised Manuscript: January 14, 2010
Manuscript Accepted: January 19, 2010
Published: January 22, 2010

Yonggang Xi, Yun Suk Jung, and Hong Koo Kim, "Interaction of light with a metal wedge: the role of diffraction in shaping energy flow," Opt. Express 18, 2588-2600 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
  2. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, Hoboken, 1999).
  3. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  4. A. Sommerfeld, Optics (Academic Press, New York, 1954).
  5. A. Rubinowicz, "Thomas Young and the theory of diffraction," Nature 180(4578), 160-162 (1957). [CrossRef]
  6. J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Am. 52(2), 116-130 (1962). [CrossRef] [PubMed]
  7. Y. Z. Umul, "Alternative interpretation of the edge-diffraction phenomenon," J. Opt. Soc. Am. A 25(3), 582-587 (2008). [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297(5582), 820-822 (2002). [CrossRef] [PubMed]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424(6950), 824-830 (2003). [CrossRef] [PubMed]
  10. P. Lalanne, and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2(8), 551-556 (2006). [CrossRef]
  11. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3(5), 324-328 (2007). [CrossRef]
  12. E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, "Near-field diffraction by a slit: implications for superresolution microscopy," Appl. Opt. 25(12), 1890-1900 (1986). [CrossRef] [PubMed]
  13. S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B 70(19), 195428 (2004). [CrossRef]
  14. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3(3), 152-156 (2009). [CrossRef]
  15. E. D. Palik, ed., Optical Constants of Solids (Academic Press, New York, 1998).
  16. A. Taflove, and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House, 2005).
  17. P. Ya. Ufimtsev, Fundamentals of the physical theory of diffraction (Wiley-IEEE, New Jersey, 2007). [CrossRef]
  18. Y. Z. Umul, "Modified theory of physical optics approach to wedge diffraction problems," Opt. Express 13(1), 216-224 (2005). [CrossRef] [PubMed]
  19. E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, 2002).
  20. L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14(26), 12629-12636 (2006). [CrossRef] [PubMed]
  21. Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, "Near- to far-field imaging of free-space and surface bound waves emanating from a metal nanoslit," Appl. Phys. Lett. 92(2), 023104 (2008). [CrossRef]
  22. H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, "Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits," Appl. Phys. Lett. 94(14), 141102 (2009). [CrossRef]
  23. Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, "Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit," Opt. Express 16(23), 18881-18882 (2008). [CrossRef]
  24. J. Nkoma, R. Loudon, and D. R. Tilly, "Elementary properties of surface polaritons," J. Phys. C Solid State Phys. 7(19), 3547-3559 (1974). [CrossRef]
  25. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004). [CrossRef] [PubMed]
  26. J. Wuenschell, and H. K. Kim, "Surface plasmon dynamics in an isolated metallic nanoslit," Opt. Express 14(21), 10000-10013 (2006). [CrossRef] [PubMed]
  27. J. Wuenschell, and H. K. Kim, "Excitation and propagation of surface plasmons in a metallic nanoslit structure," IEEE Trans. Nanotechnol. 7(2), 229-236 (2008). [CrossRef]
  28. F. J. García de Abajo, "Colloquium: light scattering by particle and hole arrays," Rev. Mod. Phys. 79(4), 1267-1290 (2007). [CrossRef]
  29. J. H. Kang, D. S. Kim, and Q. H. Park, "Local capacitor model for plasmonic electric field enhancement," Phys. Rev. Lett. 102(9), 093906 (2009). [CrossRef] [PubMed]
  30. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86(24), 5601-5603 (2001). [CrossRef] [PubMed]
  31. J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, "Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004). [CrossRef] [PubMed]
  32. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q. H. Park, "Control of surface plasmon generation efficiency by slit-width tuning," Appl. Phys. Lett. 92(5), 051115 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited