OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2682–2694

Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer

Jyh-Yang Wang, Fu-Ji Tsai, Jeng-Jie Huang, Cheng-Yen Chen, Nola Li, Yean-Woei Kiang, and C. C. Yang  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2682-2694 (2010)
http://dx.doi.org/10.1364/OE.18.002682


View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of localized surface plasmon (LSP) interaction for significantly enhancing InGaN absorption near its band edge and the overall efficiency of an InGaN-based solar cell by embedding Ag nanoparticles (NPs) in the InGaN absorbing layer is numerically demonstrated. The generation of LSP resonance on the embedded Ag NPs and the NP scattering can produce a field distribution in the InGaN layer for enhancing absorption. It is shown that the embedded Ag NPs do not significantly affect the transport of the photo-generated carriers. The distortion of static electrical stream lines in the solar cell due to the embedded Ag NP leads to a decrease of photocurrent by only a few percents. Based on the material parameter values we use, unless the surface recombination velocity at the interface between the Ag NP and surrounding InGaN is extremely high, Ag NP embedment in the absorbing layer of an InGaN-based solar cell can enhance its efficiency by up to 27%. Such an increase is significantly larger than that achieved by depositing metal NP on the top surface of a solar cell.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

History
Original Manuscript: November 23, 2009
Revised Manuscript: January 1, 2010
Manuscript Accepted: January 18, 2010
Published: January 25, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Citation
Jyh-Yang Wang, Fu-Ji Tsai, Jeng-Jie Huang, Cheng-Yen Chen, Nola Li, Yean-Woei Kiang, and C. C. Yang, "Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer," Opt. Express 18, 2682-2694 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2682


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]
  2. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984). [CrossRef]
  3. A. Goetzberger and C. Hebling, “Photovoltaic materials, past, present, future,” Sol. Energy Mater. Sol. Cells 62(1-2), 1–19 (2000). [CrossRef]
  4. A. K. Sharma, S. K. Agarwal, and S. N. Singh, “Determination of front surface recombination velocity of silicon solar cells using the short-wavelength spectral response,” Sol. Energy Mater. Sol. Cells 91(15-16), 1515–1520 (2007). [CrossRef]
  5. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007). [CrossRef]
  6. J. F. Geisz, S. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, “High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction,” Appl. Phys. Lett. 91(2), 023502 (2007). [CrossRef]
  7. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008). [CrossRef]
  8. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007). [CrossRef]
  9. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009). [CrossRef]
  10. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002). [CrossRef]
  11. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1–xGaxN alloys,” Appl. Phys. Lett. 80(25), 4741–4743 (2002). [CrossRef]
  12. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett. 70(9), 1089–1091 (1997). [CrossRef]
  13. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003). [CrossRef]
  14. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN∕InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007). [CrossRef]
  15. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008). [CrossRef]
  16. X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R.-M. Lin, and Y.-C. Lu, “High-quality InGaN∕GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008). [CrossRef]
  17. J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett. 30(3), 225–227 (2009). [CrossRef]
  18. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009). [CrossRef]
  19. X. M. Cai, S. W. Zeng, and B. P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett. 95(17), 173504 (2009). [CrossRef]
  20. C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El-Masry, “Determination of the critical layer thickness in the InGaN/GaN heterostructures,” Appl. Phys. Lett. 75(18), 2776–2778 (1999). [CrossRef]
  21. S. M. de Sousa Pereira, K. P. O’Donnell, and E. J. da Costa Alves, “Role of nanoscale strain inhomogeneity on the light emission from InGaN epilayers,” Adv. Funct. Mater. 17(1), 37–42 (2007). [CrossRef]
  22. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008). [CrossRef]
  23. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008). [CrossRef]
  24. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009). [CrossRef]
  25. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef]
  26. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986 . [CrossRef] [PubMed]
  27. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  28. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007). [CrossRef]
  29. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008). [CrossRef]
  30. S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, C. H. Chen, and B.-W. Liou, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett. 87(1), 011111 (2005). [CrossRef]
  31. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997). [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991).
  33. S. Aydogu and O. Ozbas, “The investigation of mole fraction dependence of mobility for InxGa1−xN alloy,” Mater. Sci. Semicond. Process. 8(4), 536–539 (2005). [CrossRef]
  34. S. Selberherr, Analysis and Simulation of Semi-Conductor Devices (Springer-Verlag Wien, New York, 1984).
  35. M. Debez, R. J. Tarento, and D. E. Mekki, “Recombination at the interface between a metallic precipitate and a semiconductor matrix: Application to the electron-beam-induced-current contrast,” Superlattices Microstruct. 45(4-5), 469–474 (2009). [CrossRef]
  36. K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence,” Appl. Phys. Lett. 86(5), 052105 (2005). [CrossRef]
  37. Y. K. Kuo, H. Y. Chu, S. H. Yen, B. T. Liou, and M. L. Chen, “Bowing parameter of zincblende InxGa1-xN,” Opt. Commun. 280(1), 153–156 (2007). [CrossRef]
  38. H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1-4), 595–603 (2005). [CrossRef]
  39. O. Gfrörer, C. Gemmer, J. Off, J. S. Im, F. Scholz, and A. Hangleiter, “Direct observation of pyroelectric fields in InGaN/GaN and AlGaN/GaN heterostructures,” Phys. Status Solidi C 216(1), 405–408 (1999). [CrossRef]
  40. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited