OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2695–2709

Exploring, tailoring, and traversing the solution landscape of a phase-shaped CARS process

Alexander C.W. van Rhijn, Herman L. Offerhaus, Peter van der Walle, Jennifer L. Herek, and Aliakbar Jafarpour  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2695-2709 (2010)
http://dx.doi.org/10.1364/OE.18.002695


View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pulse shaping techniques are used to improve the selectivity of broadband CARS experiments, and to reject the overwhelming background. Knowledge about the fitness landscape and the capability of tailoring it is crucial for both fundamental insight and performing an efficient optimization of phase shapes. We use an evolutionary algorithm to find the optimal spectral phase of the broadband pump and probe beams in a background-suppressed shaped CARS process. We then investigate the shapes, symmetries, and topologies of the landscape contour lines around the optimal solution and also around the point corresponding to zero phase. We demonstrate the significance of the employed phase bases in achieving convex contour lines, suppressed local optima, and high optimization fitness with a few (and even a single) optimization parameter.

© 2010 OSA

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(320.0320) Ultrafast optics : Ultrafast optics
(320.5540) Ultrafast optics : Pulse shaping
(180.5655) Microscopy : Raman microscopy
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Spectroscopy

History
Original Manuscript: November 23, 2009
Revised Manuscript: January 12, 2010
Manuscript Accepted: January 18, 2010
Published: January 25, 2010

Citation
Alexander C.W. van Rhijn, Herman L. Offerhaus, Peter van der Walle, Jennifer L. Herek, and Aliakbar Jafarpour, "Exploring, tailoring, and traversing the solution landscape of a phase-shaped CARS process," Opt. Express 18, 2695-2709 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  2. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103(4), 043905 (2009). [CrossRef] [PubMed]
  3. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65(4), 043408 (2002). [CrossRef]
  4. P. Brumer and M. Shapiro, “Control of unimolecular reactions using coherent light,” Chem. Phys. Lett. 126(6), 541–546 (1986). [CrossRef]
  5. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68(10), 1500–1503 (1992). [CrossRef] [PubMed]
  6. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002). [CrossRef] [PubMed]
  7. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60(2), 1287–1292 (1999). [CrossRef]
  8. J. X. Chen, A. Volkmer, L. D. Book, and ., “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002). [CrossRef]
  9. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002). [CrossRef] [PubMed]
  10. S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006). [CrossRef] [PubMed]
  11. B.-C. Chen and S.-H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008). [CrossRef] [PubMed]
  12. B. vonvacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264(2), 488–493 (2006). [CrossRef]
  13. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007). [CrossRef] [PubMed]
  14. S. O. Konorov, X. G. Xu, R. F. Turner, M. W. Blades, J. W. Hepburn, and V. Milner, “Pulse optimization for Raman spectroscopy with cross-correlation frequency resolved optical gating,” Opt. Express 15(12), 7564–7571 (2007). [CrossRef] [PubMed]
  15. J. Konradi, A. K. Singh, A. V. Scaria, and A. Materny, “Selective spectral filtering of molecular modes of beta-carotene in solution using optimal control in four-wave-mixing spectroscopy,” J. Raman Spectrosc. 37(6), 697–704 (2006). [CrossRef]
  16. S. Pezeshki, M. Schreiber, and U. Kleinekathöfer, “Shaping femtosecond coherent anti-Stokes Raman spectra using optimal control theory,” Phys. Chem. Chem. Phys. 10(15), 2058–2066 (2008). [CrossRef] [PubMed]
  17. S. Zhang, L. Zhang, X. Zhang, L. Ding, G. Chen, Z. Sun, and Z. Wang, “Selective excitation of CARS by adaptive pulse shaping based on genetic algorithm,” Chem. Phys. Lett. 433(4–6), 416–421 (2007). [CrossRef]
  18. J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7, 3574–3579 (2005). [CrossRef]
  19. A. M. Weiner, D. E. Leaird, P. G. Wiederrecht, and K. A. Nelson, “Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy,” J. Opt. Soc. Am. B 8(6), 1264–1275 (1991). [CrossRef]
  20. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16(8), 5499–5504 (2008). [CrossRef] [PubMed]
  21. X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008). [CrossRef]
  22. S. Mukamel, “Controlling multidimensional off-resonant-Raman and infrared vibrational spectroscopy by finite pulse band shapes,” J. Chem. Phys. 130(5), 054110 (2009). [CrossRef] [PubMed]
  23. J. J. Song, G. L. Eesley, and M. D. Levenson, “Background suppression in coherent Raman spectroscopy,” Appl. Phys. Lett. 29(9), 567 (1976). [CrossRef]
  24. Y. J. Lee and M. T. Cicerone, “Single-shot interferometric approach to background free broadband coherent anti-Stokes Raman scattering spectroscopy,” Opt. Express 17(1), 123–135 (2009). [CrossRef] [PubMed]
  25. S.-H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett. 32(10), 1332–1334 (2007). [CrossRef] [PubMed]
  26. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc. 40(7), 726–731 (2009). [CrossRef]
  27. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008). [CrossRef] [PubMed]
  28. A. C. W. van Rhijn, S. Postma, J. P. Korterik, J. L. Herek, and H. L. Offerhaus, “Chemically selective imaging by spectral phase shaping for broadband CARS around 3000 cm−1,” J. Opt. Soc. Am. B 26(3), 559–563 (2009). [CrossRef]
  29. P. van der Walle, H. L. Offerhaus, J. L. Herek, and A. Jafarpour, “Tailoring a coherent control solution landscape by linear transforms of spectral phase basis,” Opt. Express 18(2), 973–987 (2010). [CrossRef]
  30. L. Cheng and D. Y. Kim, “Differential imaging in coherent anti-Stokes Raman scattering microscopy with Laguerre- Gaussian excitation beams,” Opt. Express 15(16), 10123–10134 (2007). [CrossRef] [PubMed]
  31. S. A. Malinovskaya and V. S. Malinovsky, “Chirped-pulse adiabatic control in coherent anti-Stokes Raman scattering for imaging of biological structure and dynamics,” Opt. Lett. 32(6), 707–709 (2007). [CrossRef] [PubMed]
  32. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60(1), 277–292 (2009). [CrossRef] [PubMed]
  33. T. Brixner, N. H. Damrauer, B. Kiefer, and G. Gerber, “Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies,” J. Chem. Phys. 118(8), 3692 (2003). [CrossRef]
  34. N. Hansen, “The CMA evolution strategy: a tutorial,” http://www.lri.fr/~hansen/cmatutorial.pdf .
  35. R. Fanciulli, L. Willmes, J. Savolainen, P. van der Walle, T. Bäck, and J. L. Herek, “Evolution strategies for laser pulse compression,” Lect. Notes Comput. Sci. 4926, 219–230 (2008). [CrossRef]
  36. P. S. C. Heuberger, P. M. J. Van den Hof, and B. Wahlberg, Modelling and Identification with Rational Orthogonal Basis Functions (Springer, 2005).
  37. M. Telescu, N. Tanguy, P. Bréhonnet, and P. Vilbé, “Efficient Gram-matrix computation for irrational resonant systems using Kautz models,” Signal Process. 87(12), 3234–3240 (2007). [CrossRef]
  38. A. Jafarpour, J. Savolainen, R. de Jong, J. Middag, D. P. Sprünken, P. van der Walle, D. Yang, and J. L. Herek, “Robust orthogonal parameterization of evolution strategy for adaptive laser pulse shaping,” Opt. Express 17(14), 11986–12000 (2009). [CrossRef] [PubMed]
  39. N. Hansen, “Tutorial: Covariance Matrix Adaptation (CMA) Evolution Strategy,” Institute of Computational Science, ETH Zurich, September 2006 PPSN 2006.
  40. R. E. Kalman, “Canonical structure of linear dynamical systems,” Proc. Natl. Acad. Sci. U.S.A. 48(4), 596–600 (1962). [CrossRef] [PubMed]
  41. U. Forssell and L. Ljung, “Closed-loop identification revisited,” Automatica 35(7), 1215–1241 (1999). [CrossRef]
  42. B. Nouri, R. Achar, M. Nakhla, and D. Saraswat, “z-Domain Orthonormal Vector Fitting for Macromodeling High-Speed Modules Characterized by Tabulated Data,” in Proc. 12th IEEE Workshop on Signal Propagation on Interconnects (SPI 2008), pp. 1–4, DOI: 10.1109/SPI.2008.4558378. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited