OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2719–2728

Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity

T. Tawara, H. Kamada, T. Tanabe, T. Sogawa, H. Okamoto, P. Yao, P. K. Pathak, and S. Hughes  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2719-2728 (2010)
http://dx.doi.org/10.1364/OE.18.002719


View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photoluminescence spectra from a quantum-dot exciton weakly-coupled to a planar photonic-crystal cavity is experimentally investigated by temperature tuning. Significant resonance shifts of the cavity mode are observed as the cavity mode spectrally approaches that of the exciton mode, showing the appearance of cavity-to-exciton attraction or mode pulling. Cavity-mode spectral shifts are also found theoretically using a master equation model that includes incoherent pump processes for the coupled exciton and cavity, pure dephasing, and allows for photon emission via radiation modes and the leaky cavity mode. Both experiments and theory show clear cavity mode spectral shifts in the photoluminescence spectra, when certain coupling parameters are met. However, discrepancies between the experimental data and theory, including more pronounced spectral shifts in the measurements, indicate that other unknown mode-pulling effects may also be occurring.

© 2010 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Quantum Optics

History
Original Manuscript: September 25, 2009
Revised Manuscript: December 3, 2009
Manuscript Accepted: January 22, 2010
Published: January 26, 2010

Citation
T. Tawara, H. Kamada, T. Tanabe, T. Sogawa, H. Okamoto, P. Yao, P. K. Pathak, and S. Hughes, "Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity," Opt. Express 18, 2719-2728 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "Deterministic generation of single photons from one atom trapped in a cavity," Science 303, 1992 (2004), [CrossRef] [PubMed]
  2. A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268 (2003). [CrossRef] [PubMed]
  3. E. Hagley, X. Matre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, "Generation of Einstein-Podolsky-Rosen pairs of atoms," Phys. Rev. Lett. 79, 1 (1997). [CrossRef]
  4. E. Moreau, I. Robert, J. M. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001). [CrossRef]
  5. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: a single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  6. J. P. Reithmaier, G. Se ogonk, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot semiconductor microcavity system," Nature 432, 197 (2004). [CrossRef] [PubMed]
  7. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. A. Imamoglu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184 (2000). [CrossRef]
  8. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-photon strongcoupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004). [CrossRef] [PubMed]
  10. K. Hennessy, A. Badolato, M. Winger, A. Atature, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896 (2007). [CrossRef] [PubMed]
  11. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  12. H. J. Carmichael, Statistical Methods in Quantum Optics 2, (Springer, 2008).
  13. M. Kaniber, A. Laucht, A. Neumann, J.M. Villas-Boas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B 77, 161303(R) (2008). [CrossRef]
  14. D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler,M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007). [CrossRef] [PubMed]
  15. S. Hughes and P. Yao, "Theory of the quantum nature of a strongly coupled single quantum dot cavity system," Opt. Express 17, 3322 (2009). [CrossRef] [PubMed]
  16. G. Cui and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006). [CrossRef]
  17. A. Auffeves, B. Besga, J.-M. Gerard, and J-P Poizat, "Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity," Phys. Rev. A 77, 063833 (2008). [CrossRef]
  18. M. Yamaguchi, T. Asano, and S. Noda, "Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics," Opt. Express 16, 18067 (2008). [CrossRef] [PubMed]
  19. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008). [CrossRef]
  20. J. Suffczynski, A. Dousse, K. Gauthron, A. Lemaitre, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, "Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems," Phys. Rev. Lett. 103, 027401 (2009). [CrossRef] [PubMed]
  21. T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa, "Cavity mode emission in weakly coupled quantum dot - cavity systems," Opt. Express 17, 6643 (2009). [CrossRef] [PubMed]
  22. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoglu, Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot cavity system, Phys. Rev. Lett. 103, 207403 (2009). [CrossRef]
  23. P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Munch, S. Reitzenstein, P. Franeck, A. Loffler, T. Heindel, S. Hofling, L. Worschech, and A. Forchel, "Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay between pump-induced stimulated emission and anharmonic cavity-QED," Phys. Rev. B (in press).
  24. F. P. Laussy, E. del Valle, and C. Tejedor, "Strong coupling of quantum dots in microcavities," Phys. Rev. Lett. 101, 083601 (2008). [CrossRef] [PubMed]
  25. A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, G. Bohm, M. Kaniber, and J. J. Finley, "Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities" Phys. Rev. Lett. 103, 087405 (2009). [CrossRef] [PubMed]
  26. A. Ridolfo, O. Di Stefano, S. Portolan, and S. Savasta, "Photoluminescence from microcavities strongly coupled to single quantum dots," unpublished.
  27. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88,041112 (2006). [CrossRef]
  28. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87,141105 (2005). [CrossRef]
  29. L. Tian and H. J. Carmichael, "Incoherent excitation of the Jaynes-Cummings system," Quantum Opt. 4, 131 (1992). [CrossRef]
  30. T. Takagahara, "Theory of exciton dephasing in semiconductor quantum dots," Phys. Rev. B 60, 2638 (1999). [CrossRef]
  31. B. Krummheuer, V. M. Axt, and T. Kuhn "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002). [CrossRef]
  32. P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001). [CrossRef] [PubMed]
  33. I. Wilson-Rae and A. Imamoglu, "Quantum dot cavity-QED in the presence of strong electron-phonon interactions," Phys. Rev. B 65, 235311 (2002). [CrossRef]
  34. F. Milde, A. Knorr, and S. Hughes, "Role of electron-phonon scattering on the vacuum Rabi splitting of a singlequantum dot and a photonic-crystal-nanocavity," Phys. Rev. B 78, 035330 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited