OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2782–2796

Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging

Sergio Ortiz, Damian Siedlecki, Ireneusz Grulkowski, Laura Remon, Daniel Pascual, Maciej Wojtkowski, and Susana Marcos  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2782-2796 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for three-dimensional 3-D optical distortion (refraction) correction on anterior segment Optical Coherence Tomography (OCT) images has been developed. The method consists of 3-D ray tracing through the different surfaces, following denoising, segmentation of the surfaces, Delaunay representation of the surfaces, and application of fan distortion correction. The correction has been applied theoretically to realistic computer eye models, and experimentally to OCT images of: an artificial eye with a Polymethyl Methacrylate (PMMA) cornea and an intraocular lens (IOL), an enucleated porcine eye, and a human eye in vivo obtained from two OCT laboratory set-ups (time domain and spectral). Data are analyzed in terms of surface radii of curvature and asphericity. Comparisons are established between the reference values for the surfaces (nominal values in the computer model; non-contact profilometric measurements for the artificial eye; Scheimpflug imaging for the real eyes in vivo and vitro). The results from the OCT data were analyzed following the conventional approach of dividing the optical path by the refractive index, after application of 2-D optical correction, and 3-D optical correction (in all cases after fan distortion correction). The application of 3-D optical distortion correction increased significantly both the accuracy of the radius of curvature estimates and particularly asphericity of the surfaces, with respect to conventional methods of OCT image analysis. We found that the discrepancies of the radii of curvature estimates from 3-D optical distortion corrected OCT images are less than 1% with respect to nominal values. Optical distortion correction in 3-D is critical for quantitative analysis of OCT anterior segment imaging, and allows accurate topography of the internal surfaces of the eye.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Imaging Systems

Original Manuscript: November 13, 2009
Revised Manuscript: December 30, 2009
Manuscript Accepted: January 5, 2010
Published: January 26, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Sergio Ortiz, Damian Siedlecki, Ireneusz Grulkowski, Laura Remon, Daniel Pascual, Maciej Wojtkowski, and Susana Marcos, "Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging," Opt. Express 18, 2782-2796 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2204 . [CrossRef] [PubMed]
  2. P. Rosales, M. Dubbelman, S. Marcos, and G. L. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006). [CrossRef] [PubMed]
  3. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005). [CrossRef]
  4. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001). [PubMed]
  5. A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor Influence of Myopic Laser in Situ Keratomileusis on the Posterior Corneal Surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009). [CrossRef] [PubMed]
  6. S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008). [CrossRef] [PubMed]
  7. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg. 33(3), 418–429 (2007). [CrossRef] [PubMed]
  8. S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007). [CrossRef] [PubMed]
  9. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4842 . [CrossRef] [PubMed]
  10. P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006). [CrossRef]
  11. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002). [CrossRef] [PubMed]
  12. P. Rosales and S. Marcos, “Pentacam Scheimpflug Quantative Imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25, 421–428 (2009). [CrossRef]
  13. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical Coherence Tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009). [CrossRef] [PubMed]
  14. F. A. Jakobiec, Ocular anatomy, embryology, and teratology (Harper & Row, Philadelphia, 1982).
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  16. C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 33(1), 98–103 (1992). [PubMed]
  17. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 . [CrossRef] [PubMed]
  18. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  19. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003). [CrossRef] [PubMed]
  20. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region,” Opt. Lett. 28(9), 707–709 (2003). [CrossRef] [PubMed]
  21. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28(11), 905–907 (2003). [CrossRef] [PubMed]
  22. H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 µm,” Opt. Lett. 30(10), 1171–1173 (2005). [CrossRef] [PubMed]
  23. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002). [CrossRef]
  24. T. Simpson and D. Fonn, “Optical Coherence Tomography of the Anterior Segment,” Ocul. Surf. 6(3), 117–127 (2008). [PubMed]
  25. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001). [PubMed]
  26. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14880 . [CrossRef] [PubMed]
  27. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004). [CrossRef] [PubMed]
  28. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 . [PubMed]
  29. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009). [CrossRef] [PubMed]
  30. X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002). [CrossRef] [PubMed]
  31. E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated Analysis of OCT Images of the Crystalline Lens,” in: Ophthalmic Technologies XIX, edited by F. Manns, P. G. Söderberg, A. Ho Proc. of SPIE Vol. 7163, 716313 (2009).
  32. I. Takada, “Noise in Optical Low-Coherence Reflectrometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998). [CrossRef]
  33. A. G. Podoleanu, “Unbalanced versus Balanced Operation in an Optical Coherence Tomography System,” Appl. Opt. 39(1), 173–182 (2000). [CrossRef]
  34. R. C. Haskell, D. Liao, A. E. Pivonka, T. L. Bell, B. R. Haberle, B. M. Hoeling, and D. C. Petersen, “Role of beat noise in limiting the sensitivity of optical coherence tomography,” J. Opt. Soc. Am. A 23(11), 2747–2755 (2006). [CrossRef]
  35. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002). [CrossRef] [PubMed]
  36. J. B. Keller and H. B. Keller, “Determination of reflected and transmitted fields by geometrical optics,” J. Opt. Soc. Am. 40(1), 48–52 (1950). [CrossRef]
  37. J. E. Weddell, J. A. Alvarado, and M. J. Hogan, Histology of the human eye (W.B. Saunders and Co, 1971).
  38. M. J. Stafford, The histology and biology of the lens (Bausch & Lomb, 2001).
  39. G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86(1), 3–18 (2003). [CrossRef] [PubMed]
  40. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4087 KB)     
» Media 2: AVI (4197 KB)     
» Media 3: AVI (4133 KB)     
» Media 4: AVI (3382 KB)     
» Media 5: AVI (1919 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited