OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2858–2871

Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering

Chulmin Joo, Conor L. Evans, Thomas Stepinac, Tayyaba Hasan, and Johannes F. de Boer  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2858-2871 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantitative measurement of diffusive and directional processes of intracellular structures is not only critical in understanding cell mechanics and functions, but also has many applications, such as investigation of cellular responses to therapeutic agents. We introduce a label-free optical technique that allows non-perturbative characterization of localized intracellular dynamics. The method combines a field-based dynamic light scattering analysis with a confocal interferometric microscope to provide a statistical measure of the diffusive and directional motion of scattering structures inside a microscopic probe volume. To demonstrate the potential of this technique, we examined the localized intracellular dynamics in human epithelial ovarian cancer cells. We observed the distinctive temporal regimes of intracellular dynamics, which transitions from random to directional processes on a timescale of ~0.01 sec. In addition, we observed disrupted directional processes on the timescale of 1~5 sec by the application of a microtubule polymerization inhibitor, Colchicine, and ATP depletion.

© 2010 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.1350) Scattering : Backscattering
(290.5820) Scattering : Scattering measurements

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 21, 2009
Revised Manuscript: December 17, 2009
Manuscript Accepted: December 29, 2009
Published: January 27, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Chulmin Joo, Conor L. Evans, Thomas Stepinac, Tayyaba Hasan, and Johannes F. de Boer, "Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering," Opt. Express 18, 2858-2871 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Tyson, K. Chen, and B. Novak, “Network dynamics and cell physiology,” Nat. Rev. Mol. Cell Biol. 2(12), 908–916 (2001). [CrossRef] [PubMed]
  2. R. B. Nicklas, “How cells get the right chromosomes,” Science 275(5300), 632–637 (1997). [CrossRef] [PubMed]
  3. J. Li, G. Lykotrafitis, M. Dao, and S. Suresh, “Cytoskeletal dynamics of human erythrocyte,” Proc. Natl. Acad. Sci. U.S.A. 104(12), 4937–4942 (2007). [CrossRef] [PubMed]
  4. S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J. 78(4), 1736–1747 (2000). [CrossRef] [PubMed]
  5. L. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006). [CrossRef] [PubMed]
  6. R. P. Kulkarni, D. D. Wu, M. E. Davis, and S. E. Fraser, “Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(21), 7523–7528 (2005). [CrossRef] [PubMed]
  7. K. M. Van Citters, B. D. Hoffman, G. Massiera, and J. C. Crocker, “The role of F-actin and myosin in epithelial cell rheology,” Biophys. J. 91(10), 3946–3956 (2006). [CrossRef] [PubMed]
  8. B. J. Berne, and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (John Wiley, New York, 1976).
  9. W. Brown, Dynamic Light Scattering: The Method and Some Applications (Clarendon Press, Oxford, 1993).
  10. T. Tanaka and G. B. Benedek, “Observation of protein diffusivity in intact human and bovine lenses with application to cataract,” Invest. Ophthalmol. Vis. Sci. 14, 449–456 (1975).
  11. Y. Georgalis, E. B. Starikov, B. Hollenbach, R. Lurz, E. Scherzinger, W. Saenger, H. Lehrach, and E. E. Wanker, “Huntingtin aggregation monitored by dynamic light scattering,” Proc. Natl. Acad. Sci. U.S.A. 95(11), 6118–6121 (1998). [CrossRef] [PubMed]
  12. J. Peetermans, I. Nishio, S. T. Ohnishi, and T. Tanaka, “Light-scattering study of depolymerization kinetics of sickle hemoglobin polymers inside single erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 83(2), 352–356 (1986). [CrossRef] [PubMed]
  13. R. P. Singh, V. K. Jaiswal, and V. K. Jain, “Study of smoke aerosols under a controlled environment by using dynamic light scattering,” Appl. Opt. 45(10), 2217–2221 (2006). [CrossRef] [PubMed]
  14. I. Nishio, J. Peetermans, and T. Tanaka, “Microscope laser light scattering spectroscopy of single biological cells,” Cell Biophys. 7(2), 91–105 (1985). [CrossRef] [PubMed]
  15. A. Meller, R. Bar-Ziv, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, “Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy,” Biophys. J. 74(3), 1541–1548 (1998). [CrossRef] [PubMed]
  16. P. D. Kaplan, V. Trappe, and D. A. Weitz, “Light-scattering microscope,” Appl. Opt. 38(19), 4151–4157 (1999). [CrossRef]
  17. R. Dzakpasu and D. Axelrod, “Dynamic light scattering microscopy. A novel optical technique to image submicroscopic motions. I: theory,” Biophys. J. 87(2), 1279–1287 (2004). [CrossRef] [PubMed]
  18. R. Dzakpasu and D. Axelrod, “Dynamic light scattering microscopy. A novel optical technique to image submicroscopic motions. II: Experimental applications,” Biophys. J. 87(2), 1288–1297 (2004). [CrossRef] [PubMed]
  19. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  20. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  21. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  22. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  23. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef] [PubMed]
  24. W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33(14), 1596–1598 (2008). [CrossRef] [PubMed]
  25. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009). [CrossRef] [PubMed]
  26. C. Joo and J. F. de Boer are preparing a manuscript to be called “Theory for field-based dynamic light scattering microscopy.”
  27. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  28. T. Wilson, Confocal Microscopy (Academic Press, 1990).
  29. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994). [CrossRef] [PubMed]
  30. Liposyn II Intravenous Fat Emulsion, Hospira Inc., http://www.hospira.com/Files/TPN_Liposyn_II.pdf .
  31. A. Einstein, “On the Motion – Required by the Molecular Kinetic Theory of Heat – of Small Particles Suspended in a Stationary Liquid,” Ann. Phys. 17, 549–560 (1905). [CrossRef]
  32. S. Yazdanfar and J. A. Izatt, “Self-referenced Doppler optical coherence tomography,” Opt. Lett. 27(23), 2085–2087 (2002). [CrossRef]
  33. S. Tang, C.-H. Sun, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Imaging subcellular scattering contrast by using combined optical coherence and multiphoton microscopy,” Opt. Lett. 32(5), 503–505 (2007). [CrossRef] [PubMed]
  34. P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V. Viasnoff, J. P. Butler, and J. J. Fredberg, “Cytoskeletal remodelling and slow dynamics in the living cell,” Nat. Mater. 4(7), 557–561 (2005). [CrossRef] [PubMed]
  35. G. Lenormand, J. Chopin, P. Bursac, J. J. Fredberg, and J. P. Butler, “Directional memory and caged dynamics in cytoskeletal remodelling,” Biochem. Biophys. Res. Commun. 360(4), 797–801 (2007). [CrossRef] [PubMed]
  36. T. Ichikawa, M. Yamada, D. Homma, R. J. Cherry, I. E. G. Morrison, and S. Kawato, “Digital fluorescence imaging of trafficking of endosomes containing low-density lipoprotein in brain astroglial cells,” Biochem. Biophys. Res. Commun. 269(1), 25–30 (2000). [CrossRef] [PubMed]
  37. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K.-H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007). [CrossRef] [PubMed]
  38. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Backscattering spectroscopic contrast with angle-resolved optical coherence tomography,” Opt. Lett. 32(21), 3158–3160 (2007). [CrossRef] [PubMed]
  39. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002). [CrossRef] [PubMed]
  40. J. W. Pyhtila and A. Wax, “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry,” Opt. Express 12(25), 6178–6183 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited