OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2872–2883

Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy

I-Chen Ho, Xiaoyu Guo, and X.-C. Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2872-2883 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When a sample being tested is optically opaque or has a high absorption coefficient, a reflective measurement is often more suitable than a transmission measurement. We report the design and evaluation of a reflective terahertz time-domain spectroscopy (R-THz-TDS), using air as THz wave emitter and sensor, together with air-biased-coherent-detection (ABCD) method for the first time. With an 85 fs pulse amplified laser, we demonstrate a usable bandwidth from 0.5 THz to 12 THz, together with a peak dynamic range (DR) better than 2000:1 and a peak THz electrical field greater than 30 kV/cm. With a 32 fs pulse amplified laser, the usable bandwidth is remarkably expanded to a continuous 35 THz. Several far-infrared optical properties in various samples are reported. Furthermore, the time-resolved optical pump-THz probe experiment is performed. Finally, the uniqueness and advantage of this spectrometer are comprehensively compared with traditional THz-TDS and Fourier transform infrared (FTIR) spectroscopy.

© 2010 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(320.0320) Ultrafast optics : Ultrafast optics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: October 22, 2009
Revised Manuscript: December 30, 2009
Manuscript Accepted: January 15, 2010
Published: January 27, 2010

I-Chen Ho, Xiaoyu Guo, and X.-C. Zhang, "Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy," Opt. Express 18, 2872-2883 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Nuss, D. H. Auston, and F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide,” Phys. Rev. Lett. 58(22), 2355–2358 (1987). [CrossRef] [PubMed]
  2. D. Grischkowsky, S. Keiding, M. V. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  3. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  4. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996). [CrossRef]
  5. T.-R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, “Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42(13), 2372–2376 (2003). [CrossRef] [PubMed]
  6. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83(15), 3000–3002 (2003). [CrossRef]
  7. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 µJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007). [CrossRef]
  8. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett. 92(15), 151107 (2008). [CrossRef]
  9. H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, “Subpicosecond, electromagnetic pulses from intense laser-plasma interaction,” Phys. Rev. Lett. 71(17), 2725–2728 (1993). [CrossRef] [PubMed]
  10. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25(16), 1210–1212 (2000). [CrossRef]
  11. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett. 30(20), 2805–2807 (2005). [CrossRef] [PubMed]
  12. X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006). [CrossRef] [PubMed]
  13. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007). [CrossRef] [PubMed]
  14. N. Karpowicz and X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009). [CrossRef] [PubMed]
  15. J. Dai, X. Xie, and X.-C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. Lett. 97(10), 103903 (2006). [CrossRef] [PubMed]
  16. X. Lu, N. Karpowicz, and X.-C. Zhang, “Broadband terahertz detection with selected gases,” J. Opt. Soc. Am. B 26(9), A66–A73 (2009). [CrossRef]
  17. C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997). [CrossRef]
  18. D. Hashimshony, I. Geltner, G. Cohen, Y. Avitzour, A. Zigler, and C. Smith, “Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy,” J. Appl. Phys. 90(11), 5778–5781 (2001). [CrossRef]
  19. C.-H. Shon, W.-Y. Chong, S.-G. Jeon, G.-J. Kim, J.-I. Kim, and Y.-S. Jin, “High Speed Terahertz Pulse Imaging in the Reflection Geometry and Image Quality Enhancement by Digital Image Processing,” Int. J. Infrared Millim. Waves 29(1), 79–88 (2008). [CrossRef]
  20. M. Khazan, R. Meissner, and I. Wilke, “Convertible transmission-reflection time-domain terahertz spectrometer,” Rev. Sci. Instrum. 72(8), 3427–3430 (2001). [CrossRef]
  21. A. Pashkin, M. Kempa, H. Němec, F. Kadlec, and P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74(11), 4711–4717 (2003). [CrossRef]
  22. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001). [CrossRef]
  23. T.-I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72(23), 3032–3034 (1998). [CrossRef]
  24. S. Watanabe, R. Kondo, S. Kagoshima, and R. Shimano, “Spin-density-wave gap in (TMTSF)2PF6 probed by reflection-type terahertz time-domain spectroscopy,” Phys. Stat. Sol. (b) 245(12), 2688–2691 (2008). [CrossRef]
  25. P. R. Griffiths, “Fourier transform infrared spectrometry,” Science 222(4621), 297–302 (1983). [CrossRef] [PubMed]
  26. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008). [CrossRef]
  27. M. Naftaly and R. Dudley, “Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers,” Opt. Lett. 34(8), 1213–1215 (2009). [CrossRef] [PubMed]
  28. D. Edward, Palik, “Silicon (Si),” “Calcium Carbonate, Calcite (CaCO3),” “Indium Arsenide (InAs),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Elsevier, 1998).
  29. M. Hase, M. Kitajima, A. M. Constantinescu, and H. Petek, “The birth of a quasiparticle in silicon observed in time-frequency space,” Nature 426(6962), 51–54 (2003). [CrossRef] [PubMed]
  30. V. B. Podobedov, D. F. Plusquellica, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” JQSRT 109, 458–467 (2008).
  31. R. A. Cheville and D. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20(15), 1646–1648 (1995). [CrossRef] [PubMed]
  32. J. Liu and X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009). [CrossRef]
  33. S. Akturk, A. Couairon, M. Franco, and A. Mysyrowicz, “Spectrogram representation of pulse self compression by filamentation,” Opt. Express 16(22), 17626–17636 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17626 . [CrossRef] [PubMed]
  34. L. J. Bignell and R. A. Lewis, “Reflectance studies of candidate THz emitters,” J. Mater. Sci. Mater. Electron. 20(S1), S326–S331 (2009). [CrossRef]
  35. Q. Wu, F. G. Sun, P. Campbell, and X.-C. Zhang, “Dynamic range of an electro-optic field sensor and its imaging applications,” Appl. Phys. Lett. 68(23), 3224–3226 (1996). [CrossRef]
  36. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (181 KB)     
» Media 2: MOV (343 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited