OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2934–2939

Power switched multiphoton upconversion emissions of Er3+ in Yb3+/Er3+ codoped β-NaYF4 microcrystals induced by 980 nm excitation

Kezhi Zheng, Lili Wang, Daisheng Zhang, Dan Zhao, and Weiping Qin  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2934-2939 (2010)
http://dx.doi.org/10.1364/OE.18.002934


View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiphoton upconversion (UC) emissions from the high-energy states (4G9/2, 4G7/2, 2K13/2, and 2P3/2) of Er3+ ions were observed under 980 nm excitation. These high-energy excited states were populated by a five-photon or a four-photon UC process conditionally, which depended on the near-infrared (NIR) pump density. Experiments exhibited that the power dependence originated from the varied populating routes of intermediated 4S3/2 and 4F9/2 of Er3+ under different NIR pump power. A mechanism of the power density-dependent multiphoton UC processes was proposed based on experimental data and analysis.

© 2010 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 30, 2009
Revised Manuscript: January 6, 2010
Manuscript Accepted: January 12, 2010
Published: January 27, 2010

Citation
Kezhi Zheng, Lili Wang, Daisheng Zhang, Dan Zhao, and Weiping Qin, "Power switched multiphoton upconversion emissions of Er3+ in Yb3+/Er3+ codoped β-NaYF4 microcrystals induced by 980 nm excitation," Opt. Express 18, 2934-2939 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45(1-6), 341–345 (1990). [CrossRef]
  2. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996). [CrossRef]
  3. J. F. Suyver, J. Grimm, K. W. Krämer, and H. U. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4: Er3+, Yb3+,” J. Lumin. 114(1), 53–59 (2005). [CrossRef]
  4. W. Qin, C. Cao, L. Wang, J. Zhang, D. Zhang, K. Zheng, Y. Wang, G. Wei, G. Wang, P. Zhu, and R. Kim, “Ultraviolet upconversion fluorescence from 6D(J) of Gd3+ induced by 980 nm excitation,” Opt. Lett. 33(19), 2167–2169 (2008). [CrossRef] [PubMed]
  5. T. Hebert, R. Wannemacher, W. Lenth, and R. Macfarlane, “Blue and green cw upconversion lasing in Er: YLiF,” Appl. Phys. Lett. 57(17), 1727 (1990). [CrossRef]
  6. Y. Mita, K. Hirama, N. Ando, H. Yamamoto, and S. Shionoya, “Luminescence processes in Tm3+-and Er3+-ion-activated, Yb3+-ion-sensitized infrared upconversion devices,” J. Appl. Phys. 74(7), 4703 (1993). [CrossRef]
  7. M. Hehlen, K. Krämer, H. Güdel, R. McFarlane, and R. Schwartz, “Upconversion in Er3+-dimer systems: Trends within the series Cs3Er2X9 (X= Cl, Br, I),” Phys. Rev. B 49(18), 12475–12484 (1994). [CrossRef]
  8. L. Aarts, B. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4: Er, Yb,” J. Appl. Phys. 106(2), 023522 (2009). [CrossRef]
  9. G. Qin, W. Qin, C. Wu, S. Huang, J. Zhang, S. Lu, D. Zhao, and H. Liu, “Enhancement of ultraviolet upconversion in Yb3+ and Tm3+ codoped amorphous fluoride film prepared by pulsed laser deposition,” J. Appl. Phys. 93(7), 4328 (2003). [CrossRef]
  10. G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express 16(16), 11907–11914 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11907 . [CrossRef] [PubMed]
  11. Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er and Yb for efficient frequency upconversion,” Appl. Phys. Lett. 63(24), 3268 (1993). [CrossRef]
  12. F. Vetrone, J. Boyer, J. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96, 661 (2004). [CrossRef]
  13. G. Wang, W. Qin, J. Zhang, Y. Wang, C. Cao, L. Wang, G. Wei, P. Zhu, and R. Kim, “Enhancement of violet and ultraviolet upconversion emissions in Yb3+/Er3+-codoped YF3 nanocrystals,” Opt. Mater. 31(2), 296–299 (2008). [CrossRef]
  14. H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004). [CrossRef]
  15. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005). [CrossRef]
  16. X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects,” J. Phys. Chem. C 111(36), 13611–13617 (2007). [CrossRef]
  17. X. Qu, H. Song, X. Bai, G. Pan, B. Dong, H. Zhao, F. Wang, and R. Qin, “Preparation and upconversion luminescence of three-dimensionally ordered macroporous ZrO2: Er3+, Yb3+.,” Inorg. Chem. 47(20), 9654–9659 (2008). [CrossRef] [PubMed]
  18. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 4
 
Fig. 3 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited