OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2967–2972

Highly sensitive silicon microring sensor with sharp asymmetrical resonance

Huaxiang Yi, D. S. Citrin, and Zhiping Zhou  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2967-2972 (2010)
http://dx.doi.org/10.1364/OE.18.002967


View Full Text Article

Enhanced HTML    Acrobat PDF (1439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the resonance spectrum in silicon microring resonators taking into account the end-facet reflection from a coupled waveguide, which can provide a dense set of Fabry-Perot resonances. Based on the simple configuration of a microring coupled with a waveguide, the resulting asymmetric Fano-like non-Lorentzian resonance is obtained by scattering theory and experiment. Enhanced sensing performance with steeper slope to the resonance is theoretically predicted and experimentally demonstrated for a 10-μm racetrack silicon microring resonator. A high sensitivity of ~10−8 RIU in terms of the detection limit is obtained in a 30-dB signal-to-noise ratio (SNR) system.

© 2010 OSA

OCIS Codes
(230.4555) Optical devices : Coupled resonators

ToC Category:
Sensors

History
Original Manuscript: November 30, 2009
Revised Manuscript: January 7, 2010
Manuscript Accepted: January 21, 2010
Published: January 27, 2010

Citation
Huaxiang Yi, D. S. Citrin, and Zhiping Zhou, "Highly sensitive silicon microring sensor with sharp asymmetrical resonance," Opt. Express 18, 2967-2972 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2967


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” Photon. Technol. Lett. 10(4), 549–551 (1998). [CrossRef]
  2. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  3. C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006). [CrossRef]
  4. Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008). [CrossRef]
  5. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006). [CrossRef]
  6. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  7. M. Hammer and E. van Groesen, “Total multimode reflection at facets of planar high-contrast optical waveguides,” J. Lightwave Technol. 20(8), 1549–1555 (2002). [CrossRef]
  8. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008). [CrossRef] [PubMed]
  9. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002). [CrossRef]
  10. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microring with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003). [CrossRef]
  11. V. M. N. Passaro and F. De Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 124–133 (2006). [CrossRef]
  12. W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006). [CrossRef] [PubMed]
  13. J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, and D. X. Xu, “Gradient-index antireflective subwavelength structures for planar waveguide facets,” Opt. Lett. 32(13), 1794–1796 (2007). [CrossRef] [PubMed]
  14. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15(8), 4745–4752 (2007). [CrossRef] [PubMed]
  15. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited