OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 3079–3092

In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography

Christine P. Fleming, Kara J. Quan, Hui Wang, Guy Amit, and Andrew M. Rollins  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 3079-3092 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1097 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Currently, cardiac radiofrequency ablation (RFA) is guided by indirect signals. We demonstrate optical coherence tomography (OCT) characterization of RFA lesions within swine ventricular wedges. Untreated tissue exhibited a consistent birefringence artifact within OCT images due to the organized myocardium, which was not present in treated tissue. Birefringence artifacts were detected by filtering with a Laplacian of Gaussian (LoG) to quantify gradient strength. The gradient strength distinguished RFA lesions from untreated sites (p=5.93×10-15) with a sensitivity and specificity of 94.5% and 86.7% respectively. This study demonstrates the potential of OCT for monitoring cardiac RFA, confirming lesion formation and providing feedback to avoid complications.

© 2010 Optical Society of America

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 28, 2009
Revised Manuscript: December 21, 2009
Manuscript Accepted: December 22, 2009
Published: January 28, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Christine P. Fleming, Kara J. Quan, Hui Wang, Guy Amit, and Andrew M. Rollins, "In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography," Opt. Express 18, 3079-3092 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Rosamond, K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, S. M. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. McDermott, J. Meigs, C. Moy, G. Nicho, C. O’Donnell, V. Roger, P. Sorlie, J. Steinberger, T. Thom, M. Wilson, and Y. Hong, "Heart Disease and Stroke Statistics 2008 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee," Circulation 117, e25-e146 (2008). [CrossRef]
  2. S. K. S. Huang and M. A. Wood, Catheter Ablation of Cardiac Arrhythmias (Saunders, 2006).
  3. R. Brockman, "Cardiac Ablation Catheters Generic Arrhythmia Indications for Use; Guidance for Industry," (FDA Center for Devices and Radiological Health. Cardiac Electrophysiology and Monitoring Branch Division of Cardiovascular and Respiratory Devices Office of Device Evaluation, Rockville, MD, 2002).
  4. B. Joung, M. Lee, J.-H. Sung, J.-Y. Kim, S. Ahn, and S. Kim, "Pediatric Radiofrequency Catheter Ablation Sedation Methods and Success, Complication and Recurrence Rates," Circulation J. 70, 278-284 (2006). [CrossRef] [PubMed]
  5. A. O. Grant, "Recent Advances in the Treatment of Arrhythmias," Circulation J. 67, 651-655 (2003). [CrossRef] [PubMed]
  6. D. O’Donnell and V. Nadurata, "Radiofrequency Ablation for Post Infarction Ventricular Tachycardia," Indian Pacing Electrophysiol. J. 4, 63-72 (2004).
  7. T. Dickfeld, R. Kato, M. Zviman, S. Nazarian, H. Ashikaga, A. C. Lardo, R. D. Berger, H. Calkins, and H. Halperin, "Characterization of Acute and Subacute Radiofrequency Ablation Lesions with Non-enhanced Magnetic Resonance Imaging," Heart Rhythm 4, 208-214 (2007). [CrossRef] [PubMed]
  8. T. Dickfeld, R. Kato, M. Zviman, S. Lai, G. Meininger, A. C. Lardo, A. Roguin, D. Blumke, R. Berger, H. Calkins, and H. Halperin, "Characterization of Radiofrequency Ablation Lesions with Gadolinium-Enhanced Cardiovascular Magnetic Resonance Imaging," J Am Coll Cardiol 47, 370-378 (2006). [CrossRef] [PubMed]
  9. J. Alaeddini, M. A. Wood, B. P. Lee, and K. A. Ellenbogen, "Incidence, Time Course, and Characteristics of Microbubble Formation During Radiofrequency Ablation of Pulmonary Veins with an 8-mm Ablation Catheter," Pacing Clin. Electrophysiol 29, 979-984 (2006). [CrossRef] [PubMed]
  10. M. David Schwartzman, R. John Nosbisch, and R. Debra Housel, "Echocardiographically guided left atrial ablation: Characterization of a new technique," Heart Rhythm Soc. 3, 930-938 (2006). [CrossRef]
  11. T. Dickfeld, R. Kato, M. Zviman, S. Lai, G. Meininger, A. C. Lardo, A. Roguin, D. Blumke, R. Berger, H. Calkins, and H. Halperin, "Characterization of Radiofrequency Ablation Lesions With Gadolinium-Enhanced Cardiovascular Magnetic Resonance Imaging," Journal American College Cardiology 47, 370-378 (2008). [CrossRef]
  12. T. Dickfeld, R. Kato, M. Zviman, S. Nazarian, J. Dong, H. Ashikaga, A. C. Lardo, R. D. Berger, H. Calkins, and H. Halperin, "Characterization of acute and subacute radio frequency ablation lesions with nonenhanced magnetic resonance imaging," Heart Rhythm 4, 208-214 (2007). [CrossRef] [PubMed]
  13. E. J. Schmidt, V. K. Reddy, and J. N. Ruskin, "Nonenhanced magnetic resonance imaging for characterization of acute and subacute radiofrequency ablation lesions," Heart Rhythm 4, 215-217 (2007). [CrossRef] [PubMed]
  14. J.-F. Ren and F. E. Marchinski, "Utility of Intracardiac Echocardiography in Left Heart Ablation for Tachyarrhythmias," Echocardiography 24, 533-540 (2007). [CrossRef] [PubMed]
  15. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications (Springer, 2008). [CrossRef]
  16. M. Gupta, A. M. Rollins, J. A. Izatt, and I. R. Efimov, "Imaging of the atrioventricular node using optical coherence tomography," J Cardiovasc Electrophysiol 13, 95 (2002). [CrossRef] [PubMed]
  17. M. W. Jenkins, R. S. Wade, Y. Cheng, A. M. Rollins, and I. R. Efimov, "Optical Coherence Tomography Imaging of the Purkinje Network," J. Cardiovasc. Electrophysiol 16(5), 559-560 (2005). [CrossRef] [PubMed]
  18. M. E. Brezinski, "Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside?," J. Biomed. Opt. 12, 051705 (2007). [CrossRef] [PubMed]
  19. C. P. Fleming, C. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, "Quantification of Cardiac Fiber Orientation Using Optical Coherence Tomography," J. Biomed. Opt. 13, 030505 (2008). [CrossRef] [PubMed]
  20. W. Hucker, C. Ripplinger, C. P. Fleming, V. Fedorov, A. M. Rollins, and I. R. Efimov, "Bimodal Biophotonic Imaging of the Structure-Function Relationship in Cardiac Tissue," J Biomed. Opt. 13, 054012 (2008). [CrossRef] [PubMed]
  21. N. A. Patel, X. Li, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, "Guidance of aortic ablation using optical coherence tomography," The International Journal of Cardiovascular Imaging 19, 171-178 (2003). [CrossRef] [PubMed]
  22. S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue," J. Surgical Res. 82, 275-284 (1999). [CrossRef] [PubMed]
  23. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Real-time microscopic visualization of tissue response to laser thermal therapy," Opt. Lett. 12, 020501 (2007). [CrossRef]
  24. M. Ford, Y. Zhou, H. Wang, C. X. Deng, and A. M. Rollins, "Optical coherence tomography monitoring of cardiac ablation by high-intensity focused ultrasound," Proc. SPIE 5686, 432 (2005). [CrossRef]
  25. J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003). [CrossRef] [PubMed]
  26. S. Sato, T. Shimada, M. Ishihara, T. Arai, T. Matsui, A. Kurita, M. Obara, M. Kikuchi, H. Wakisaka, and H. Ashida, "Laser Ablation Characteristics of Myocardium Tissue in the UV Spectral Region: An In-vitro Study with Porcine Myocardium Tissue," in OSA BOSD, (1999).
  27. S. Bosman, "Heat-induced structural alterations in myocardium in relation to changing optical properties," Appl. Opt. 32, 461-463 (1993). [CrossRef] [PubMed]
  28. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994). [CrossRef] [PubMed]
  29. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, "Imaging thermally damaged tissue by polarization sensitive optical coherence tomography," Opt. Express 3, 212-218 (1998). [CrossRef] [PubMed]
  30. K. Schoenenberger, J. Bill W. Colston, D. J. Maitland, L. B. D. Silva, and M. J. Everett, "Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography," Appl. Opt. 37, 6026-6036 (1998). [CrossRef]
  31. B. Liu, M. Harman, S. Giattina, D. Stamper, Charles Demakis, M. Chilek, S. Raby, and M. Brezinski, "Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography," Appl. Opt. 45, 4464-4479 (2006). [CrossRef] [PubMed]
  32. S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Intl. J. Cardiology 107, 400-409 (2006). [CrossRef] [PubMed]
  33. Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Measurement Science Technol. 14, 41-46 (2003). [CrossRef]
  34. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Un-arunyawee, and J. A. Izatt, "In Vivo Video Rate Optical Coherence Tomography," Opt. Express 3, 219-229 (1998). [CrossRef] [PubMed]
  35. Z. Hu and A. M. Rollins, "Quasi-telecentric optical design of a microscope-compatible OCT scanner," Opt. Express 13, 6407-6415 (2005). [CrossRef] [PubMed]
  36. Z. Hu and A. Rollins, "Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer," Opt. Lett. 32, 3524-3527 (2007). [CrossRef]
  37. B. Holmbom, U. Niislund, A. Eriksson, I. Virtancn, and L.-E. Thornell, "Comparison of triphenyltetrazolium chloride (TTC) staining versus detection of fibronectin in experimental myocardial infarction," Histochemistry 99, 265-275 (1993). [CrossRef] [PubMed]
  38. L. Bretzner and T. Lindeberg, "Feature Tracking with Automatic Selection of Spatial Scales," Computer Vision and Image Understanding 71, 385-392 (1998). [CrossRef]
  39. P. Whittaker, S.-m. Zheng, M. J. Patterson, R. A. Kloner, K. E. Daly, and R. A. Hartman, "Histologic Signatures of Thermal Injury: Applications in Transmyocardial Laser Revascularization and Radiofrequency Ablation," Lasers in Surgery and Medicine 27, 305-318 (2000). [CrossRef] [PubMed]
  40. J. M. Cooper, J. L. Sapp, U. Tedrow, C. P. Pellegrin, D. Robinson, L. M. Epstein, and W. G. Stevenson, "Ablation with an internally irrigated radiofrequency catheter: Learning how to avoid steam pops," Heart Rhythm 1, 329-333 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1592 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited