OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 3137–3142

Selective trapping of multiple particles by volume speckle field

Vladlen G. Shvedov, Andrei V. Rode, Yana V. Izdebskaya, Anton S. Desyatnikov, Wieslaw Krolikowski, and Yuri S. Kivshar  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 3137-3142 (2010)
http://dx.doi.org/10.1364/OE.18.003137


View Full Text Article

Enhanced HTML    Acrobat PDF (2993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest a new approach for selective trapping of light absorbing particles in gases by multiple optical bottle-beam-like traps created by volume speckle field. We demonstrate stable simultaneous confinement of a few thousand micro-particles in air with a single low-power laser beam. The size distribution of trapped particles exhibits a narrow peak near the average size of an optical speckle. Thus, the speckle-formed traps act as a sieve with the holes selecting particles of a similar size.

© 2010 Optical Society of America

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: November 17, 2009
Revised Manuscript: January 25, 2010
Manuscript Accepted: January 25, 2010
Published: January 28, 2010

Citation
Vladlen G. Shvedov, Andrei V. Rode, Yana V. Izdebskaya, Anton S. Desyatnikov, Wieslaw Krolikowski, and Yuri S. Kivshar, "Selective trapping of multiple particles by volume speckle field," Opt. Express 18, 3137-3142 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008). [CrossRef] [PubMed]
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  5. J. Baumgartl, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nat. Photonics 2, 675-678 (2008). [CrossRef]
  6. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009). [CrossRef] [PubMed]
  7. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998). [CrossRef]
  8. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008). [CrossRef] [PubMed]
  9. D. Rudd, C. Lopez-Mariscal, M. Summers, A. Shahvisi, J. C. Gutierrez-Vega, and D. Mc-Gloin, "Fiber based optical trapping of aerosols," Opt. Exp. 16, 14550-14560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14550. [CrossRef]
  10. J. B. Wills, K. J. Knox, and J. P. Reid, "Optical control and characterisation of aerosol," Chem. Phys. Lett. 481, 153-165 (2009). [CrossRef]
  11. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena, (Springer, 2002), pp. 780-785.
  12. M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982). [CrossRef]
  13. S. De Nicola, A. Finizo, P. Mormile, G. Pierattini, S. Martellucci, J. Quartieri, F. Bloisi, and L. Vicari, "Experimental Results on the Photophoretic Motion and Radiometric Trapping of Particles by Irradiation with Laser Light," Appl. Phys. B 47, 247-250 (1988). [CrossRef]
  14. J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004). [CrossRef] [PubMed]
  15. T. B. Jones, Electromechanics of Particles (Cambridge University Press, NY, 1995). [CrossRef]
  16. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, "Optical guiding of absorbing nanoclusters in air," Opt. Express 17, 5743-5757 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5743 [CrossRef] [PubMed]
  17. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode,W. Krolikowski, and Yu. S. Kivshar, "Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment," Opt. Express 17, 8201-8211 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8201 [CrossRef] [PubMed]
  18. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001). [CrossRef]
  19. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-15-5831. [CrossRef] [PubMed]
  20. J. Arlt and M. J. Padgett, "Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam," Opt. Lett. 25, 191-193 (2000). [CrossRef]
  21. N. Bokor and N. Davidson, "A three dimensional dark focal spot uniformly surrounded by light," Opt. Commun. 279, 229-234 (2007). [CrossRef]
  22. V. G. Shvedov, Y. V. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, "Generation of optical bottle beams by incoherent white-light vortices," Opt. Express 16, 20902-20907 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20902 [CrossRef] [PubMed]
  23. L. Isenhower, W. Williams, A. Dally, and M. Saffman, "Atom trapping in an interferometrically generated bottle beam trap," Opt. Lett. 34, 1159-1161 (2009). [CrossRef] [PubMed]
  24. J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts and Co., CO, 2007).
  25. V. Shvedov, W. Krolikowski, A. Volyar, D. Neshev, A. Desyatnikov, and Yu. Kivshar, "Focusing and correlation properties of white-light optical vortices," Opt. Express 13, 7393-7398 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7393 [CrossRef] [PubMed]
  26. A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002). [CrossRef]
  27. A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000). [CrossRef]
  28. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Z. Krolikowski, and Y. S. Kivshar, "Optical Pipeline for Transport of Particles," in Optical Trapping Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuC4, http://www.opticsinfobase.org/abstract.cfm?URI=OTA-2009-OTuC4
  29. M. Born and E. Wolf, Principles of Optics (7th Ed., Cambridge University Press, 2003).
  30. A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69,S755-S758 (1999). [CrossRef]
  31. K. O’Holleran, M. R. Dennis, and M. J. Padgett, "Topology of Light’s Darkness," Phys. Rev. Lett. 102, 143902 (2009). [CrossRef] [PubMed]
  32. S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993). [CrossRef]
  33. A. B. Pluchino, "Radiometric levitation of spherical carbon aerosol particles using a Nd:YAG laser," Appl. Opt. 22, 1861 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

Supplementary Material


» Media 1: MOV (9598 KB)     
» Media 2: MOV (2181 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited