OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 3199–3209

Error propagation in differential phase evaluation

Marta Miranda, V. Álvarez-Valado, Benito V. Dorrío, and Higinio González-Jorge  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 3199-3209 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In many metrological applications the data being measured is associated to the phase difference codified in two fringe patterns. This phase difference can be recovered directly with what are called Differential Phase Shifting Algorithms (DPSAs) by using a combination of irradiance values from both patterns in the arctangent argument. Use of such algorithms requires characterisation mechanisms to inform of their sensitivity to the various random and systematic error sources, which is the same as for well-studied Phase Shifting Algorithms (PSAs). Thus, we present a new analysis of error propagation for DPSAs taking into account the frequency shifting property of the employed arctangent function. The general analysis is verified for significant specific cases associated to large errors that appear during phase difference evaluation using the Monte Carlo method, which provides a characterisation of a DPSA’s sensitivity; this is an alternative to spatial and temporal techniques but has wholly coinciding results. Monte Carlo simulation opens up the possibilities for the analysis of other error types for any DPSA.

© 2010 OSA

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 7, 2009
Revised Manuscript: January 9, 2010
Manuscript Accepted: January 14, 2010
Published: January 29, 2010

Marta Miranda, V. Álvarez-Valado, Benito V. Dorrío, and Higinio González-Jorge, "Error propagation in differential phase evaluation," Opt. Express 18, 3199-3209 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. V. Dorrío and J. L. Fernández, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol. 10(3), 33–55 (1999). [CrossRef]
  2. D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for Optical Testing (Taylor&Francis Group 2005).
  3. J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350–352 (1984).
  4. D. C. Ghiglia, and M. D. Pritt, Two-dimensional phase unwrapping, Wiley, New York, 1998.
  5. K. A. Stetson, “Theory and applications of electronic holography,” in SEM Conference on Hologram Interferometry and Speckle Metrology: 294–300 (1990).
  6. M. Owner-Petersen, “Digital speckle pattern shearing interferometry: limitations and prospects,” Appl. Opt. 30(19), 2730–2738 (1991). [CrossRef] [PubMed]
  7. C. S. Vikram, W. K. Witherow, and J. D. Trolinger, “Algorithm for phase-difference measurement in phase-shifting interferometry,” Appl. Opt. 32(31), 6250–6252 (1993). [CrossRef] [PubMed]
  8. K. A. Stetson and W. R. Brohinsky, “Electrooptic holography and its application to hologram interferometry,” Appl. Opt. 24(21), 3631–3637 (1985). [CrossRef] [PubMed]
  9. H. Saldner, N. Molin, and K. Stetson, “Fourier-transform evaluation of phase data in spatially phase-biased TV holograms,” Appl. Opt. 35(2), 332–336 (1996). [CrossRef] [PubMed]
  10. J. Burke and H. Helmers, “Complex division as a common basis for calculating phase differences in electronic speckle pattern interferometry in one step,” Appl. Opt. 37(13), 2589–2590 (1998). [CrossRef]
  11. M. Miranda and B. V. Dorrío, “Error-phase compensation properties of differential phase-shifting algorithms for Fizeau fringe patterns ,” in RIAO/OPTILAS 2007 AIP Conf. Proc. 992, 993–998 (2007). [CrossRef]
  12. M. Miranda, and B. V. Dorrío, “Error behaviour in Differential Phase-Shifting Algorithms,” Proc. SPIE 7102, 71021B–1 - 71021B–9 (2008).
  13. M. Miranda, and B. V. Dorrío, “Design and assessment of Differential Phase-Shifting Algorithms by means of their Fourier representation,” in Fringe 2009 (Elsevier, Stuttgart, 2009) 153–159.
  14. J. F. Mosiño, M. Servin, J. C. Estrada, and J. A. Quiroga, “Phasorial analysis of detuning error in temporal phase shifting algorithms,” Opt. Express 17(7), 5618–5623 (2009). [CrossRef] [PubMed]
  15. M. Servin, J. C. Estrada, J. A. Quiroga, J. F. Mosiño, and M. Cywiak, “Noise in phase shifting interferometry,” Opt. Express 17(11), 8789–8794 (2009). [CrossRef] [PubMed]
  16. J. F. Mosiño, D. M. Doblado, and D. M. Hernández, “Calculus of exact detuning phase shift error in temporal phase shifting algorithms,” Opt. Express 17(18), 15766–15771 (2009). [CrossRef] [PubMed]
  17. J. F. Mosiño, D. M. Doblado, and D. M. Hernández, “A method to design tunable quadrature filters in phase shifting interferometry,” Opt. Express 17(18), 15772–15777 (2009). [CrossRef] [PubMed]
  18. M. Servin, J. C. Estrada, and J. A. Quiroga, “Spectral analysis of phase shifting algorithms,” Opt. Express 17(19), 16423–16428 (2009). [CrossRef] [PubMed]
  19. M. Miranda and B.V. Dorrío, “Fourier analysis of two-stage phase-shifting algorithms,” J. Opt. Soc. Am. A, doc. ID 115412 (posted 1 December 2009, in press).
  20. K. G. Larkin and B. F. Oreb, “Propagation of errors in different phase-shifting algorithms: a special property of the arctangent function,” Proc. SPIE 1775, 219–227 (1992).
  21. J. M. Huntley, “Random phase measurements errors in digital speckle pattern interferometry,” Opt. Lasers Eng. 26(2-3), 131–150 (1997). [CrossRef]
  22. J. V. Wingerden, H. J. Frankena, and C. Smorenburg, “Linear approximation for measurement errors in phase shifting interferometry,” Appl. Opt. 30(19), 2718–2729 (1991). [CrossRef] [PubMed]
  23. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983). [CrossRef] [PubMed]
  24. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987). [CrossRef] [PubMed]
  25. M. G. Cox and P. Harris, “An outline of Supplement 1 to the Guide to the Expression of Uncertainty in Measurement on numerical methods for the propagation of distributions,” Meas. Tech. 48(4), 336–345 (2005). [CrossRef]
  26. M. A. Herrador, A. G. Asuero, and G. González, “Estimation of the uncertainty of indirect measurements from the propagation of distributions by using the Monte-Carlo method: An overview,” Chemom. Intell. Lab. Syst. 79(1-2), 115–122 (2005). [CrossRef]
  27. M. G. Cox and B. R. L. Siebert, “The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty,” Metrologia 43(4), S178–S188 (2006). [CrossRef]
  28. V. Álvarez-Valado, H. González-Jorge, B. V. Dorrío, M. Miranda, F. Rodríguez, J. L. Valencia, F. J. Yebra, J. Rodriguez, and J. Rodríguez J, “Testing phase-shifting algorithms for uncertainty evaluation in interferometric gauge block calibration,” Metrologia 46(6), 637–645 (2009). [CrossRef]
  29. R. R. Cordero, J. Molimard, A. Martínez, and F. Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry,” Opt. Commun. 275(1), 144–155 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited