OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3238–3243

Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices

Kuan-Yu Chen, Yung-Ting Chang, Yu-Hsuan Ho, Hoang-Yan Lin, Jiun-Haw Lee, and Mao-Kuo Wei  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3238-3243 (2010)
http://dx.doi.org/10.1364/OE.18.003238


View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Taking organic emitter apodization calculated from electromagnetic theory as input, the angular luminance enhancement of a microlens-array-film (MAF) attached OLED (organic light-emitting device) can be further evaluated by ray-tracing approach. First, we assumed artificial emitters and revealed that not every OLED with MAF has luminance enhancement. Then, the OLEDs of different Alq3 thickness were fabricated and their angular luminance measurement validated simulation results. Mode analyses for different layers were performed to estimate the enhancement potential of the MAF attached devices. In conclusion, the organic emitters with higher off-axis-angle luminous intensity cause lower out-coupling efficiency but gain higher enhancement after the MAF attached.

© 2010 OSA

OCIS Codes
(080.3630) Geometric optics : Lenses
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Devices

History
Original Manuscript: October 26, 2009
Revised Manuscript: January 16, 2010
Manuscript Accepted: January 20, 2010
Published: February 1, 2010

Citation
Kuan-Yu Chen, Yung-Ting Chang, Yu-Hsuan Ho, Hoang-Yan Lin, Jiun-Haw Lee, and Mao-Kuo Wei, "Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices," Opt. Express 18, 3238-3243 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3238


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005). [CrossRef]
  2. C.-L. Lin, H.-C. Chang, K.-C. Tien, and C.-C. Wu, “Influences of resonant wavelengths on performances of microcavity organic light-emitting devices,” Appl. Phys. Lett. 90(7), 071111 (2007). [CrossRef]
  3. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996). [CrossRef]
  4. H. Riel, S. Karg, T. Beierlein, W. Ries, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290–5296 (2003). [CrossRef]
  5. M.-K. Wei and I.-L. Su, “Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array,” Opt. Express 12(23), 5777–5782 (2004). [CrossRef] [PubMed]
  6. L. Lin, T. Shia, and C. Chiu, “Silicon-processed plastic micropyramids for brightness enhancement applications,” J. Micromech. Microeng. 10(3), 395–400 (2000). [CrossRef]
  7. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling Coupling-Out Efficiency in Organic Light-Emitting Devices Using a Thin Silica Aerogel Layer,” Adv. Mater. 13(15), 1149–1152 (2001). [CrossRef]
  8. Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82(21), 3779–3781 (2003). [CrossRef]
  9. H. Peng, Y. Ho, X. Yu, M. Wong, and H. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array-theory and experiment,” J. Display Technol. 1(2), 278–282 (2005). [CrossRef]
  10. Y. Sun and S. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100(7), 073106 (2006). [CrossRef]
  11. B. C. Krummacher, M. K. Mathai, V. Choong, S. A. Choulis, F. So, and A. Winnacker, “General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes,” J. Appl. Phys. 100(5), 054702 (2006). [CrossRef]
  12. H. Greiner, “Light Extraction from Organic Light Emitting Diode Substrates: Simulation and Experiment,” Jpn. J. Appl. Phys. 46(No. 7A), 4125–4137 (2007). [CrossRef]
  13. H.-C. Chen, J.-H. Lee, C.-C. Shiau, C. C. Yang, and Y.-W. Kiang, “Electromagnetic Modeling of Organic Light-Emitting Devices,” J. Lightwave Technol. 24(6), 2450–2457 (2006). [CrossRef]
  14. H. Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16(15), 11044–11051 (2008). [CrossRef] [PubMed]
  15. K. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15(4), 962–971 (1998). [CrossRef]
  16. M.-H. Lu and J. C. Sturm, “External coupling efficiency in planar organic light-emitting devices,” Appl. Phys. Lett. 78(13), 1927–1929 (2001). [CrossRef]
  17. T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys. 96(11), 6016–6022 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited