OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3264–3273

Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy

N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3264-3273 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (596 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes an imaging microscopic technique based on heterodyne digital holography where subwavelength-sized gold colloids can be imaged in cell environments. Surface cellular receptors of 3T3 mouse fibroblasts are labeled with 40 nm gold nanoparticles, and the biological specimen is imaged in a total internal reflection configuration with holographic microscopy. Due to a higher scattering efficiency of the gold nanoparticles versus that of cellular structures, accurate localization of a gold marker is obtained within a 3D mapping of the entire sample’s scattered field, with a lateral precision of 5 nm and 100 nm in the x,y and in the z directions respectively, demonstrating the ability of holographic microscopy to locate nanoparticles in living cell environments.

© 2010 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(170.1530) Medical optics and biotechnology : Cell analysis
(260.6970) Physical optics : Total internal reflection
(090.1995) Holography : Digital holography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 25, 2009
Revised Manuscript: January 19, 2010
Manuscript Accepted: January 21, 2010
Published: February 1, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, "Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy," Opt. Express 18, 3264-3273 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006). [CrossRef] [PubMed]
  2. J. L. West, R. A. Drezek, and H. N. J., "Nanotechnology provides new tools for biomedical optics," in Tissue Engineering and Artifical Organs, 3rd Edition, J. D. Bronzino, ed., pp. 25-1-25-9 (CRC Press, 2006).
  3. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells," Biophys. J. 91, 4598-4604 (2006). [CrossRef] [PubMed]
  4. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, "Single metallic nanoparticles imaging for protein detection in cells," Proc. Natl. Acad. Sci. USA 100, 11350-11355 (2003). [CrossRef] [PubMed]
  5. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2003). [CrossRef]
  6. G. Raschke, S. Kowarik, T. Franzel, C. Sonnichsen, T. A. Klar, and J. Feldmann, "Biomolecular recognition based on single gold nanoparticles light scattering," Nano Lett. 3, 935-938 (2003). [CrossRef]
  7. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005). [CrossRef] [PubMed]
  8. U. Schnars and W. P. O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  9. M. Atlan, M. Gross, and E. Absil, "Accurate phase-shifting digital interferometry," Opt. Lett. 32, 1456-1458 (2007). [CrossRef] [PubMed]
  10. F. LeClerc, M. Gross, and L. Collot, "Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography," Opt. Lett. 26, 1550-1552 (2001). [CrossRef]
  11. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Opt. Lett. 47, 5654-5659 (2008).
  12. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, "Parameter-Optimized Digital Holographic Microscope for High-Resolution Living-Cell Analysis," Appl. Opt. 43, 6536-6544 (2004). [CrossRef]
  13. M. Atlan, M. Gross, and E. Absil, "Digital holography with ultimate sensitivity," Opt. Lett. 32, 909-911 (2007). [CrossRef] [PubMed]
  14. F. LeClerc, L. Collot, and M. Gross, "Numerical heterodyne holography with two-dimensional photo-detector arrays," Opt. Lett. 25, 716-718 (2000). [CrossRef]
  15. E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000). [CrossRef]
  16. E. Leith and J. Upatnieks, "Microscopy by wave front reconstruction," J. Opt. Soc. Am. 55, 981-986 (1965).
  17. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  18. M. Gross, M. Atlan, and E. Absil, "Noise and aliases in off-axis and phase-shifting holography," Appl. Opt. 47, 1757-1766 (2008). [CrossRef] [PubMed]
  19. W. Xu, M. H. Jericho, I. A. Melnertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA. [PubMed]
  20. C. J. Mann, L. Yu, C. M. Lo, and M. K. Kim, "High resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005). [CrossRef] [PubMed]
  21. C. J. Mann, L. Yu, and M. K. Kim, "Movies of cellular and sub-cellular motion by digital holographic microscopy," Biomed. Eng. Online 5, 21 (2006). [CrossRef] [PubMed]
  22. F. Charri’ere, A. Marian, F. Montfort, J. Kuehn, and T. Colomb, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
  23. M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, "Heterodyne holographic microscopy of gold particles," Opt. Lett 35, 500-502 (2008). [CrossRef]
  24. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, "Photothermal heterodyne holography of gold nanoparticles," Opt. Express 18, 780-786 (2010). [CrossRef] [PubMed]
  25. D. Goldberg and D. Burmeister, "Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy," J. Cell Biol. 103, 1921-1931 (1986). [CrossRef] [PubMed]
  26. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriére, S. Bourquin, P. Marquet, and C. Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A 23, 3177-3190 (2006). [CrossRef]
  27. U. Schnars andW. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  28. L. Yu and M. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited