OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3284–3297

An agile laser with ultra-low frequency noise and high sweep linearity

Haifeng Jiang, Fabien Kéfélian, Pierre Lemonde, André Clairon, and Giorgio Santarelli  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3284-3297 (2010)
http://dx.doi.org/10.1364/OE.18.003284


View Full Text Article

Enhanced HTML    Acrobat PDF (509 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a fiber-stabilized agile laser with ultra-low frequency noise. The frequency noise power spectral density is comparable to that of an ultra-stable cavity stabilized laser at Fourier frequencies higher than 30 Hz. When it is chirped at a constant rate of ~ 40 MHz/s, the max non-linearity frequency error is about 50 Hz peak-to-peak over more than 600 MHz tuning range. The Rayleigh backscattering is found to be a significant frequency noise source dependent on fiber length, chirping rate and the power imbalance of the interferometer arms. We analyze this effect both theoretically and experimentally and put forward techniques to reduce this noise contribution.

© 2010 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3600) Lasers and laser optics : Lasers, tunable
(290.5870) Scattering : Scattering, Rayleigh
(140.3425) Lasers and laser optics : Laser stabilization
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 30, 2009
Revised Manuscript: January 13, 2010
Manuscript Accepted: January 14, 2010
Published: February 1, 2010

Citation
Haifeng Jiang, Fabien Kéfélian, Pierre Lemonde, André Clairon, and Giorgio Santarelli, "An agile laser with ultra-low frequency noise and high sweep linearity," Opt. Express 18, 3284-3297 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3284


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998). [CrossRef]
  2. R. W. Fox, C. W. Gates, and L. W. Hollberg, in Cavity-Enhanced Spectroscopies, R. van Zee and J. Looney, eds, vol. 40, 1–46. (Academic, 2002).
  3. P. Wolf, C. J. Bordé, A. Clairon, L. Duchayne, A. Landragin, P. Lemonde, G. Santarelli, W. Ertmer, E. Rasel, F. S. Cataliotti, M. Inguscio, G. M. Tino, P. Gill, H. Klein, S. Reynaud, C. Salomon, E. Peik, O. Bertolami, P. Gil, J. Páramos, C. Jentsch, U. Johann, A. Rathke, P. Bouyer, L. Cacciapuoti, D. Izzo, P. Natale, B. Christophe, P. Touboul, S. G. Turyshev, J. Anderson, M. E. Tobar, F. Schmidt-Kaler, J. Vigué, A. A. Madej, L. Marmet, M.-C. Angonin, P. Delva, P. Tourrenc, G. Metris, H. Müller, R. Walsworth, Z. H. Lu, L. J. Wang, K. Bongs, A. Toncelli, M. Tonelli, H. Dittus, C. Lämmerzahl, G. Galzerano, P. Laporta, J. Laskar, A. Fienga, F. Roques, and K. Sengstock,, “Quantum Physics Exploring Gravity in the Outer Solar System: The Sagas Project,” Exp. Astron. 23(2), 651–687 (2009). [CrossRef]
  4. V. Lavielle, I. Lorgeré, J.-L. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett. 28(6), 384–386 (2003). [CrossRef] [PubMed]
  5. O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007). [CrossRef]
  6. J. Hough and S. Rowan, “Laser interferometry for the detection of gravitational waves,” J. Opt. A 7, 257 (2005).
  7. J. Geng, Ch. Spiegelberg, and S. Jiang, “Narrow Linewidth Fiber Laser for 100-km Optical Frequency Domain Reflectometry,” IEEE Photon. Technol. Lett. 17(9), 1827–1829 (2005). [CrossRef]
  8. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983). [CrossRef]
  9. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999). [CrossRef]
  10. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32(6), 641–643 (2007). [CrossRef] [PubMed]
  11. J. Millo, D. V. Magalhaes, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009). [CrossRef]
  12. Y. T. Chen, “Use of single-mode optical fiber in the stabilization of laser frequency,” Appl. Opt. 28(11), 2017 (1989). [CrossRef] [PubMed]
  13. C. Greiner, B. Boggs, T. Wang, and T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23(16), 1280–1282 (1998). [CrossRef]
  14. G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27(13), 1114–1116 (2002). [CrossRef]
  15. J.-F. Cliché, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 6216001 (2006).
  16. V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89(26), 261115 (2006). [CrossRef]
  17. G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32(5), 484–486 (2007). [CrossRef] [PubMed]
  18. K. Takahashi, M. Ando, and K. Tsubono, “Stabilization of laser intensity and frequency using optical fiber,” J. Phys. Conf. Ser. 122, 012016 (2008). [CrossRef]
  19. F. Kéfélian, H. Jiang, P. Lemonde, and G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett. 34(7), 914–916 (2009). [CrossRef] [PubMed]
  20. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009). [CrossRef] [PubMed]
  21. B. S. Sheard, M. B. Gray, and D. E. McClelland, “High-bandwidth laser frequency stabilization to a fiber-optic delay line,” Appl. Opt. 45(33), 8491–8499 (2006). [CrossRef] [PubMed]
  22. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B 25(12), 2029–2035 (2008). [CrossRef]
  23. K. H. Wanser, “Fundamental phase noise limit in optical fibers due to temperature fluctuation,” Electron. Lett. 28(1), 53–54 (1992). [CrossRef]
  24. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54(2), 221–230 (1966). [CrossRef]
  25. S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultrason, Ferroelec. and Freq. Control 54(5), 918–925 (2007). [CrossRef]
  26. A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2(2), 76–82 (1984). [CrossRef]
  27. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010). [CrossRef] [PubMed]
  28. W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Annalen der Physik und Chemie 219(6), 272–282 (1871). [CrossRef]
  29. F. A. Jenkins, and H. E. White, Fundamentals of Optics, 4th ed., McGraw-Hill, Inc. (1981).
  30. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009). [CrossRef] [PubMed]
  31. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, and C. N. Man, E. Samain and P. Wolf “A coherent optical link through the turbulent atmosphere” arXiv:0911.4506v1 [physics.optics].
  32. F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett. 34(10), 1573–1575 (2009). [CrossRef] [PubMed]
  33. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett. 34(15), 2270–2272 (2009). [CrossRef] [PubMed]
  34. P. Gysel and R. K. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8(4), 561–567 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited