OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3370–3378

Artificial metal with effective plasma frequency in near-infrared region

Xingzhan Wei, Haofei Shi, Qiling Deng, Xiaochun Dong, Chunheng Liu, Yueguang Lu, and Chunlei Du  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3370-3378 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have proposed and demonstrated an artificial medium consisting of arrays of circular metal rods embedded in a dielectric host, which holds a real metal behavior but the extracted effective plasma frequency is in near-infrared region. The electromagnetic responses of such medium and the retrieved effective material parameters have been particularly shown. In addition, an analytic model about effective plasma frequency is constructed by uniquely considering the skin effect and introducing the parameter-skin depth, whose predicting results are in well accordance with the FDTD simulation. This artificial material may open possibilities for many metal-based applications in near-infrared regime.

© 2010 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(260.5740) Physical optics : Resonance
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: October 30, 2009
Revised Manuscript: January 17, 2010
Manuscript Accepted: January 18, 2010
Published: February 2, 2010

Xingzhan Wei, Haofei Shi, Qiling Deng, Xiaochun Dong, Chunheng Liu, Yueguang Lu, and Chunlei Du, "Artificial metal with effective plasma frequency in near-infrared region," Opt. Express 18, 3370-3378 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003). [CrossRef]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  4. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005). [CrossRef]
  5. N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  6. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  7. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004). [CrossRef] [PubMed]
  8. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  9. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  10. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005). [CrossRef]
  11. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998). [CrossRef]
  13. S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002). [CrossRef]
  14. M. Silveirinha and C. Fernandes, “A Hybrid Method for the Efficient Calculation of the Band Structure of 3-D Metallic Crystals,” IEEE Trans. Microw. Theory Tech. 52(3), 889–902 (2004). [CrossRef]
  15. S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75(3), 035102 (2007). [CrossRef]
  16. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007). [CrossRef] [PubMed]
  17. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005). [CrossRef] [PubMed]
  18. D. R. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  19. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69(24), 241101 (2004). [CrossRef]
  20. L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009). [CrossRef]
  21. X. Wei, X. Luo, X. Dong, and C. Du, “Localized surface plasmon nanolithography with ultrahigh resolution,” Opt. Express 15(21), 14177–14183 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited