OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3415–3425

Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3415-3425 (2010)
http://dx.doi.org/10.1364/OE.18.003415


View Full Text Article

Enhanced HTML    Acrobat PDF (962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A complete characterization of pulse shape and phase of a 1.3 µm, monolithic-two-section, quantum-dot mode-locked laser (QD-MLL) at a repetition rate of 40 GHz is presented, based on frequency resolved optical gating. We show that the pulse broadening of the QD-MLL is caused by linear chirp for all values of current and voltage investigated here. The chirp increases with the current at the gain section, whereas larger bias at the absorber section leads to less chirp and therefore to shorter pulses. Pulse broadening is observed at very high bias, likely due to the quantum confined stark effect. Passive- and hybrid-QD-MLL pulses are directly compared. Improved pulse intensity profiles are found for hybrid mode locking. Via linear chirp compensation pulse widths down to 700 fs can be achieved independent of current and bias, resulting in a significantly increased overall mode-locking range of 101 MHz. The suitability of QD-MLL chirp compensated pulse combs for optical communication up to 160 Gbit/s using optical-time-division multiplexing are demonstrated by eye diagrams and autocorrelation measurements.

© 2010 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 17, 2009
Revised Manuscript: January 14, 2010
Manuscript Accepted: January 14, 2010
Published: February 2, 2010

Citation
H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, "Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s," Opt. Express 18, 3415-3425 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3415


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Delfyett, D. H. Hartman, and S. Z. Ahmad, “Optical Clock Distribution Using a Mode-Locked Semiconductor-Laser Diode System,” J. Lightwave Technol. 9(12), 1646–1649 (1991). [CrossRef]
  2. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures (John Wiley, Chichester; New York, 1999), p. 328
  3. D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44(5), 390 (2008). [CrossRef]
  4. M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007). [CrossRef]
  5. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]
  6. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009). [CrossRef]
  7. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000). [CrossRef]
  8. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett. 17(10), 2014–2016 (2005). [CrossRef]
  9. M. Laemmlin, G. Fiol, C. Meuer, M. Kuntz, F. Hopfer, A. R. Kovsh, N. N. Ledentsov, and D. Bimberg, “Distortion-free optical amplification of 20-80 GHz modelocked laser pulses at 1.3 μu m using quantum dots,” Electron. Lett. 42(12), 697–699 (2006). [CrossRef]
  10. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009). [CrossRef]
  11. D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron. 38(12), 1587–1593 (2002). [CrossRef]
  12. G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-Dot Semiconductor Mode-Locked Lasers and Amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009). [CrossRef]
  13. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth 251(1-4), 729–736 (2003). [CrossRef]
  14. D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, “High performance narrow stripe quantum-dot lasers with etched waveguide,” Semicond. Sci. Technol. 18(12), L53–L54 (2003). [CrossRef]
  15. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, Boston, 2002).
  16. G. P. Agrawal, Nonlinear Fiber Optics, 3 ed., (Academic Press, San Diego, Calif, 2001).
  17. L. N. Xu, E. Zeek, and R. Trebino, “Measuring very complex ultrashort pulses using Frequency-Resolved Optical Gating (FROG),” 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vols 1–9, 1043–1044 (2008).
  18. N. G. Usechak, Y. C. Xin, C. Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and Direct Electric-Field Measurements of Passively Mode-Locked Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009). [CrossRef]
  19. Y. C. Xin, D. J. Kane, and L. F. Lester, “Frequency-resolved optical gating characterisation of passively modelocked quantum-dot laser,” Electron. Lett. 44(21), 1255–1256 (2008). [CrossRef]
  20. T. Piwonski, J. Pulka, G. Madden, G. Huyet, J. Houlihan, E. A. Viktorov, T. Erneux, and P. Mandel, “Intradot dynamics of InAs quantum dot based electroabsorbers,” Appl. Phys. Lett. 94(12), 123504 (2009). [CrossRef]
  21. E. A. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88(20), 201102 (2006). [CrossRef]
  22. X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3-mu m InAs quantum dot laser - Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001). [CrossRef]
  23. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative Group-Velocity Dispersion Using Refraction,” J. Opt. Soc. Am. A 1(10), 1003–1006 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited