OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3426–3437

Tapering fibers with complex shape

S. Pricking and H. Giessen  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3426-3437 (2010)
http://dx.doi.org/10.1364/OE.18.003426


View Full Text Article

Enhanced HTML    Acrobat PDF (732 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a model which allows us to accurately simulate the fabrication process of complex-shaped tapered fibers. The range of possible profiles is only limited by the properties of the heat source used to shape the fiber. The model takes into account the motion of the heat source relative to the fiber as well as its temperature distribution. Our measurements and corresponding finite element method (FEM) simulations have shown a strong dependency of the temperature distribution along the fiber axis on the actual diameter of the fiber. The inclusion of this relation in the model proved to be crucial for the accuracy of the results. Our model has been verified experimentally by fabricating tapered fibers with a sinusoidally modulated waist. A comparison to the profile predicted by our model reveals an excellent agreement.

© 2010 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 1, 2009
Revised Manuscript: January 19, 2010
Manuscript Accepted: January 19, 2010
Published: February 2, 2010

Citation
S. Pricking and H. Giessen, "Tapering fibers with complex shape," Opt. Express 18, 3426-3437 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).
  2. R. Zhang, X. Zhang, D. Meiser, and H. Giessen, "Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber," Opt. Express 12,5840-5849 (2004). [CrossRef] [PubMed]
  3. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys. Rev. Lett. 45,1095-1098 (1980). [CrossRef]
  4. A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  5. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000). [CrossRef]
  6. J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003). [CrossRef]
  7. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  8. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005). [CrossRef] [PubMed]
  9. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005). [CrossRef]
  10. G. Sague, A. Baade, and A. Rauschenbeutel, "Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres," New J. Phys. 10, 113008 (2008). [CrossRef]
  11. R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, "Group velocity dispersion of tapered fibers immersed in different liquids," Opt. Express 12, 1700-1707 (2004). [CrossRef] [PubMed]
  12. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  13. L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005). [CrossRef]
  14. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," J. Lightwave Technol. 6, 1476-1482 (1988). [CrossRef]
  15. G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005). [CrossRef]
  16. E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007). [CrossRef] [PubMed]
  17. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Carbon dioxide laser fabrication of fused-fiber couplers and tapers," Appl. Opt. 38, 6845-6848 (1999). [CrossRef]
  18. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, "Heat transfer modelling in CO laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998). [CrossRef]
  19. C. E. Chryssou, "Theoretical analysis of tapering fused silica optical fibers using a carbon dioxide laser," Opt. Eng. 38, 1645-1649 (1999). [CrossRef]
  20. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Selfcoupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004). [CrossRef] [PubMed]
  21. T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992). [CrossRef]
  22. A. Konyukhov, L. Melnikov, and Y. Mazhirina, "Dispersive wave generation in microstructured fiber with periodically modulated diameter," Proc. SPIE 6165, 616508 (2006). [CrossRef]
  23. M. Stratmann, M. Bohm, and F. Mitschke, "Stable propagation of dark solitons in dispersion maps of either sign of path-average dispersion," Electron. Lett. 37, 1182-1183 (2001). [CrossRef]
  24. M. Sumetsky, "Whispering-gallery-bottle microcavities: the three-dimensional etalon," Opt. Lett. 29, 8-10 (2004). [CrossRef] [PubMed]
  25. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, "Selective excitation of whispering gallery modes in a novel bottle microresonator," Opt. Express 17, 11916-11925 (2009). [CrossRef]
  26. Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72, 031801(R) (2005). [CrossRef]
  27. Comsol Multiphysics, Modeling Guide, (Software manual, version 3.3).
  28. F. Richter, "Upsetting and Viscoelasticity of Vitreous SiO2: Experiments, Interpretation and Simulation," PhD thesis, Technische Universit¨at Berlin (2006).
  29. F. Warken and H. Giessen, "Fast profile measurement of micrometer-sized tapered fibers with better than 50 nm accuracy," Opt. Lett. 29, 1727-1729 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited