OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3444–3455

Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation

Meng Cui and Changhuei Yang  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3444-3455 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (640 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we report a novel high capacity (number of degrees of freedom) open loop adaptive optics method, termed digital optical phase conjugation (DOPC), which provides a robust optoelectronic optical phase conjugation (OPC) solution. We showed that our prototype can phase conjugate light fields with ~3.9 x 10−3 degree accuracy over a range of ~3 degrees and can phase conjugate an input field through a relatively thick turbid medium (μsl ~13). Furthermore, we employed this system to show that the reversing of random scattering in turbid media by phase conjugation is surprisingly robust and accommodating of phase errors. An OPC wavefront with significant spatial phase errors (error uniformly distributed from – π/2 to π/2) can nevertheless allow OPC reconstruction through a scattering medium with ~40% of the efficiency achieved with phase error free OPC.

© 2010 OSA

OCIS Codes
(070.5040) Fourier optics and signal processing : Phase conjugation
(090.1000) Holography : Aberration compensation
(090.2880) Holography : Holographic interferometry
(090.1995) Holography : Digital holography
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:

Original Manuscript: January 11, 2010
Revised Manuscript: January 31, 2010
Manuscript Accepted: February 1, 2010
Published: February 2, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Meng Cui and Changhuei Yang, "Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation," Opt. Express 18, 3444-3455 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Wenner, “The most transparent research,” Nat. Med. 15(10), 1106–1109 (2009). [CrossRef] [PubMed]
  2. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009). [CrossRef]
  3. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008). [CrossRef] [PubMed]
  4. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008). [CrossRef] [PubMed]
  5. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  6. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008). [CrossRef] [PubMed]
  7. M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009). [CrossRef] [PubMed]
  8. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express 18(1), 25–30 (2010). [CrossRef] [PubMed]
  9. A. Yariv and P. Yeh, “Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron. 14(9), 650–660 (1978). [CrossRef]
  10. J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5(12), 519–521 (1980). [CrossRef] [PubMed]
  11. R. C. Lind and D. G. Steel, “Demonstration of the longitudinal modes and aberrationcorrection properties of a continuous-wave dye laser with a phase-conjugate mirror,” Opt. Lett. 6(11), 554–556 (1981). [CrossRef] [PubMed]
  12. I. Lindsay, “Specular reflection cancellation enhancement in the presence of a phase-conjugate mirror,” J. Opt. Soc. Am. B 4(11), 1810–1815 (1987). [CrossRef]
  13. D. M. Pepper, “Observation of diminished specular reflectivity from phase-conjugate mirrors,” Phys. Rev. Lett. 62(25), 2945–2948 (1989). [CrossRef] [PubMed]
  14. P. Yeh, Introduction to photorefractive nonlinear optics (John Wiley & Sons, Inc, New York, 1993).
  15. D. P. M. Gower, Optical phase conjugation (Springer-Verlag, New York, 1994).
  16. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, and H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature 353(6340), 141–143 (1991). [CrossRef]
  17. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  18. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  19. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  20. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express 16(13), 9290–9305 (2008). [CrossRef] [PubMed]
  21. M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 34–40 (1997). [CrossRef]
  22. M. Fink, “Time-reversed acoustics,” Sci. Am. 281(5), 91–97 (1999). [CrossRef]
  23. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  24. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998). [CrossRef]
  25. A. Derode, A. Tourin, and M. Fink, “Random multiple scattering of ultrasound. Ii. Is time reversal a self-averaging process?” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3), 036606 (2001). [CrossRef] [PubMed]
  26. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited