OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3487–3493

CMOS-compatible athermal silicon microring resonators

Biswajeet Guha, Bernardo B. C. Kyotoku, and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3487-3493 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (482 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new class of resonant silicon optical devices, consisting of a ring resonator coupled to a Mach-Zehnder interferometer, which is passively temperature compensated by tailoring the optical mode confinement in the waveguides. We demonstrate operation of the device over a wide temperature range of 80 degrees. The fundamental principle behind this work can be extended to other photonic devices based on resonators such as modulators, routers, switches and filters.

© 2010 OSA

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(130.0130) Integrated optics : Integrated optics
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: December 21, 2009
Revised Manuscript: January 28, 2010
Manuscript Accepted: February 1, 2010
Published: February 3, 2010

Biswajeet Guha, Bernardo B. C. Kyotoku, and Michal Lipson, "CMOS-compatible athermal silicon microring resonators," Opt. Express 18, 3487-3493 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000). [CrossRef]
  2. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007). [CrossRef]
  3. L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).
  4. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967). [CrossRef]
  5. M. Lipson, “Compact Electro-Optic Modulators on a Silicon Chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006). [CrossRef]
  6. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  7. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005). [CrossRef] [PubMed]
  8. F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and J. Renau, “Measuring power and temperature from real processors,” in IEEE International Symposium on Parallel and Distributed Processing (IEEE, Miami, FL, 2008), pp. 1–5.
  9. P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-Insensitive Silicon Microdisk Resonators Using Polymeric Cladding Layers,” in Conference on Lasers and Electro-Optics, p.CMAA4 (2009).
  10. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007). [CrossRef] [PubMed]
  11. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  12. L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009). [CrossRef]
  13. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  14. R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low Power Thermal Tuning of Second-Order Microring Resonators,” in Conference on Lasers and Electro-Optics/ Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, p.CFQ5 (2007).
  15. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008). [CrossRef] [PubMed]
  16. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, p.CPDB10 (2009).
  17. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000). [CrossRef]
  18. M. Terrel, M. J. F. Digonnet, and S. Fan, “Ring-coupled Mach-Zehnder interferometer optimized for sensing,” Appl. Opt. 48(26), 4874–4879 (2009). [CrossRef] [PubMed]
  19. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009). [CrossRef] [PubMed]
  20. S. Manipatruni, L. Chen, and M. Lipson, “50 Gbit/s Wavelength Division Multiplexing using Silicon Microring Modulators,” in Group 4 Photonics, FC3 (IEEE, San Francisco, 2009).
  21. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31(18), 2701–2703 (2006). [CrossRef] [PubMed]
  22. I. Shake, H. Takara, and S. Kawanishi, “Simple Measurement of Eye Diagram and BER Using High-Speed Asynchronous Sampling,” J. Lightwave Technol. 22(5), 1296–1302 (2004). [CrossRef]
  23. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited