OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3510–3518

Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars

Yuan-Fong Chau, Yi-Ju Lin, and Din Ping Tsai  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3510-3518 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhanced surface plasmon resonances in a silvershell nanocylindrical pair connected by a different type of nanobar that interacts with incident plane wave of transverse magnetic polarization are simulated by use of the finite element method. Arrays of silver nanoshells connected by silver nanobars are also investigated. The proposed structure exhibits a red-shifted localized surface plasmon that can be tuned over an extended wavelength range by varying the width of the nanobar and the dielectric constant in dielectric holes (DHs). The increase in the scattering cross sections is attributed to the effects of surface plasmon on the nanobar surface and a larger effective size of DH that is filled with a higher refractive medium. The predictive character of these calculations allows one to tailor the shape of the nanoparticle to achieve excitation spectra on demand with a controlled field enhancement.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: August 14, 2009
Revised Manuscript: October 3, 2009
Manuscript Accepted: October 5, 2009
Published: February 3, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Yuan-Fong Chau, Yi-Ju Lin, and Din Ping Tsai, "Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars," Opt. Express 18, 3510-3518 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res. 17(8), 271–277 (1984). [CrossRef]
  3. R. K. Chang, and T. E. Furtak, eds., Surface-Enhanced Raman Scattering (Plenum, New York, 1982)
  4. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002). [CrossRef] [PubMed]
  5. T. Vo-Dinh, ““Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends Analyt. Chem. 17(8-9), 557–582 (1998). [CrossRef]
  6. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  7. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York1983).
  8. Y. Chen, Y. Wang, Y. Zhang, and S. Liu, “Numerical investigation of the transmission enhancement through subwavelength hole array,” Opt. Commun. 274(1), 236–240 (2007). [CrossRef]
  9. F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14(1), 7–18 (2006). [CrossRef] [PubMed]
  10. D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, “Surface plasmon effects on two photon luminescence of gold nanorods,” Opt. Express 17(14), 11350–11359 (2009). [CrossRef] [PubMed]
  11. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6(11), 213–219 (2000). [CrossRef] [PubMed]
  12. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  13. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [CrossRef]
  14. Y. Hu, R. C. Fleming, and R. A. Drezek,“Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16(24), 19579–19591 (2008). [CrossRef] [PubMed]
  15. R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997). [CrossRef]
  16. L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34(1), 15–22 (2006). [CrossRef] [PubMed]
  17. J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006). [CrossRef] [PubMed]
  18. E. Prodan, P. Nordlander, and N. J. Halas, “Electronic Structure and Optical Properties of Gold Nanoshells,” Nano Lett. 3(10), 1411–1415 (2003). [CrossRef]
  19. W. C. Choy, X.-W. Chen, S. He, and P. C. Chui, “Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell,” Opt. Express 15(11), 7083–7094 (2007). [CrossRef] [PubMed]
  20. P. M. Gresho, and R. L. Sani, Incompressible Flow and Finite Element Method, Volum1 & 2 (John Wiley and Sons, New Yourk, 2000).
  21. COMSOL Multiphysics TM, http://www.comsol.com .
  22. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003). [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  24. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  25. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008). [CrossRef] [PubMed]
  26. Saxon DS (1955) UCLA Department of Meteorological Science Report 9.
  27. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75(8), 1063–1065 (1999). [CrossRef]
  28. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22(1), 47–52 (2003). [CrossRef]
  29. Y.-F. Chau and D. P. Tsai, “Three-dimensional analysis of silver nano-particles doping effects on super resolution near-field structure,” Opt. Commun. 269(2), 389–394 (2007). [CrossRef]
  30. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006). [CrossRef] [PubMed]
  31. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002). [CrossRef]
  32. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  33. X. Cui and D. Erni, “Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling,” J. Opt. Soc. Am. A 25(7), 1783–1789 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited