OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3568–3573

Rotating beams in isotropic optical system

Tatiana Alieva, Eugeny Abramochkin, Ana Asenjo-Garcia, and Evgeniya Razueva  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3568-3573 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the ray transformation matrix formalism, we propose a simple method for generation of paraxial beams performing anisotropic rotation in the phase space during their propagation through isotropic optical systems. The widely discussed spiral beams are the particular case of these beams. The propagation of these beams through the symmetric fractional Fourier transformer is demonstrated by numerical simulations.

© 2010 OSA

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms
(070.3185) Fourier optics and signal processing : Invariant optical fields

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: October 11, 2009
Revised Manuscript: January 19, 2010
Manuscript Accepted: January 28, 2010
Published: February 4, 2010

Tatiana Alieva, Eugeny Abramochkin, Ana Asenjo-Garcia, and Evgeniya Razueva, "Rotating beams in isotropic optical system," Opt. Express 18, 3568-3573 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102(3-4), 336–350 (1993). [CrossRef]
  2. E. Abramochkin and V. Volostnikov, “Spiral-type beams: optical and quantum aspects,” Opt. Commun. 125(4-6), 302–323 (1996). [CrossRef]
  3. E. Abramochkin and V. Volostnikov, “Spiral light beams,” Phys. Usp. 47(12), 1177–1203 (2004). [CrossRef]
  4. A. Y. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Centrifugal transformation of the transverse structure of freely propagating paraxial light beams,” Opt. Lett. 31(6), 694–696 (2006). [CrossRef] [PubMed]
  5. A. Bekshaev and M. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006). [CrossRef] [PubMed]
  6. S. A. Collins., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60(9), 1168–1177 (1970). [CrossRef]
  7. R. Simon and K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17(2), 342–355 (2000). [CrossRef]
  8. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23(10), 2494–2500 (2006). [CrossRef]
  9. G. F. Calvo, “Wigner representation and geometric transformations of optical orbital angular momentum spatial modes,” Opt. Lett. 30(10), 1207–1209 (2005). [CrossRef] [PubMed]
  10. T. Alieva and M. J. Bastiaans, “Orthonormal mode sets for the two-dimensional fractional Fourier transformation,” Opt. Lett. 32(10), 1226–1228 (2007). [CrossRef] [PubMed]
  11. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001).
  12. M. J. Bastiaans and T. Alieva, “First-order optical systems with unimodular eigenvalues,” J. Opt. Soc. Am. A 23(8), 1875–1883 (2006). [CrossRef]
  13. T. Alieva and M. J. Bastiaans, “Mode mapping in paraxial lossless optics,” Opt. Lett. 30(12), 1461–1463 (2005). [CrossRef] [PubMed]
  14. A. Wünsche, “General Hermite and Laguerre two-dimensional polynomials,” J. Phys. Math. Gen. 33(17), 1603–1629 (2000). [CrossRef]
  15. E. Abramochkin and V. Volostnikov, “Generalized Gaussian beams,” J. Opt. A, Pure Appl. Opt. 6(5), S157–S161 (2004). [CrossRef]
  16. T. Alieva and A. Barbé, “Self-fractional Fourier images,” J. Mod. Opt. 46, 83–99 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

Supplementary Material

» Media 1: AVI (2654 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited