OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3632–3642

Gabor-based fusion technique for Optical Coherence Microscopy

Jannick P. Rolland, Panomsak Meemon, Supraja Murali, Kevin P. Thompson, and Kye-sung Lee  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3632-3642 (2010)
http://dx.doi.org/10.1364/OE.18.003632


View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 µm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(110.1085) Imaging systems : Adaptive imaging

ToC Category:
Imaging Systems

History
Original Manuscript: December 18, 2009
Revised Manuscript: January 20, 2010
Manuscript Accepted: January 25, 2010
Published: February 4, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jannick P. Rolland, Panomsak Meemon, Supraja Murali, Kevin P. Thompson, and Kye-sung Lee, "Gabor-based fusion technique for Optical Coherence Microscopy," Opt. Express 18, 3632-3642 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source,” Opt. Lett. 20(13), 1486–1488 (1995). [CrossRef] [PubMed]
  2. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006). [CrossRef] [PubMed]
  3. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009). [CrossRef] [PubMed]
  4. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994). [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999). [CrossRef]
  6. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4–6), 203–207 (1997). [CrossRef]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995). [CrossRef]
  8. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14(17), 7661–7669 (2006). [CrossRef] [PubMed]
  9. V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007). [CrossRef] [PubMed]
  10. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
  11. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004). [CrossRef]
  12. M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett. 30(13), 1680–1682 (2005). [CrossRef] [PubMed]
  13. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008). [CrossRef] [PubMed]
  14. M. D. Sherar, M. B. Noss, and F. S. Foster, “Ultrasound backscatter microscopy images the internal structure of living tumour spheroids,” Nature 330(6147), 493–495 (1987). [CrossRef] [PubMed]
  15. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005). [CrossRef] [PubMed]
  16. J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, Proc. of SPIE Vol. 7168, 71681N (2009).
  17. S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15(24), 15854–15862 (2007). [CrossRef] [PubMed]
  18. P. Meemon, K. S. Lee, S. Murali, and J. P. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47(13), 2452–2457 (2008). [CrossRef] [PubMed]
  19. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009). [CrossRef] [PubMed]
  20. S. Murali, Gabor Domain Optical Coherence Microscopy. Ph.D. Dissertation, University of Central Florida (2009)
  21. J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K. S. Lee, “Gabor domain optical coherence tomography,” 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics edited by Adrian Podoleanu, Proc. of SPIE Vol. 7139, 71390F (2008).
  22. J. P. Rolland, J. O'Daniel, C. Akcay, T. DeLemos, K. S. Lee, K. I. Cheong, E. Clarkson, R. Chakrabarti, and R. Ferris, “Task-based optimization and performance assessment in optical coherence imaging,” J. Opt. Soc. Am. A 22(6), 1132–1142 (2005). [CrossRef]
  23. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging, Chapter 9, pp. 198–202, Wiley-Interscience (2007).
  24. H. H. Barrett and K. Myers, Foundations of image science. Chapter 4, p. 195, and Chapter 5, pp. 215–227, Hoboken, NJ: John Wiley & Sons (2004).
  25. M. Born and E. Wolf, Principles of Optics (Cambridge Press, Seventh Edition, 2003) Chap. 8, p. 490,.
  26. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002). [CrossRef] [PubMed]
  27. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007). [CrossRef]
  28. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited