OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3700–3707

Nonlinear refractive index of porcine cornea studied by z-scan and self-focusing during femtosecond laser processing

M. Miclea, U. Skrzypczak, S. Faust, F. Fankhauser, H. Graener, and G. Seifert  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3700-3707 (2010)
http://dx.doi.org/10.1364/OE.18.003700


View Full Text Article

Enhanced HTML    Acrobat PDF (285 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the nonlinear refractive index of ex-vivo pig cornea by a combined approach using the standard z-scan technique on extracted corneas or corneal slices, as well as studying the deviations caused by self-focusing during femtosecond laser processing of the pig eyes. The experiments yield consistently an upper limit of 1.2 MW for the critical power of self-focusing in porcine cornea, and a value of 2·10−19 m2/W for its nonlinear refractive index. We also demonstrate that due to this nonlinear refraction the cutting depth of typical fs-laser surgery processing in cornea may depend considerably, albeit in a well controllable way, on the laser parameters.

© 2010 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 17, 2009
Revised Manuscript: January 11, 2010
Manuscript Accepted: January 11, 2010
Published: February 5, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
M. Miclea, U. Skrzypczak, S. Faust, F. Fankhauser, H. Graener, and G. Seifert, "Nonlinear refractive index of porcine cornea studied by z-scan and self-focusing during femtosecond laser processing," Opt. Express 18, 3700-3707 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Lubatschowski, “Overview of Commercially Available Femtosecond Lasers in Refractive Surgery,” J. Refract. Surg. 24(1), 102–107 (2008).
  2. H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197, e2 (2009). [CrossRef]
  3. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, ““Corneal Refractive Surgery with Femtosecond Lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999). [CrossRef]
  4. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000). [CrossRef] [PubMed]
  5. R. W. Boyd, Nonlinear Optics (Elsevier Inc. - 2008), Chapter 7.
  6. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35(8), 1156–1167 (1999). [CrossRef]
  7. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Streak formation as side effect of optical breakdown during processing the bulk of transparent Kerr media with ultra-short laser pulses,” Appl. Phys. B 80(2), 247–253 (2005). [CrossRef]
  8. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007). [CrossRef] [PubMed]
  9. A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74(4-5), 419–425 (2002). [CrossRef]
  10. K. Plamann, V. Nuzzo, D. Peyrot, F. Deloison, M. Savoldelli, and J. M. Legeais, “Laser parameters, focusing optics and side effects in femtosecond laser corneal surgery”, Proc. SPIE 6844, W0–W10 (2008)
  11. M. P. Poudel, “Study of self-focusing effect induced by femtosecond photodisruption on model substances,” Opt. Lett. 34(3), 337–339 (2009). [CrossRef] [PubMed]
  12. E. W. Van Stryland, M. Sheik-Bahae, Characterization Techniques and Tabulations for Organic Nonlinear Materials, M. G. Kuzyk and C. W. Dirk eds., (Marcel Dekker, Inc. 1998) 655–692.
  13. M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999). [CrossRef]
  14. J. Kampmeier, B. Radt, R. Birngruber, and R. Brinkmann, “Thermal and biomechanical parameters of porcine cornea,” Cornea 19(3), 355–363 (2000). [CrossRef] [PubMed]
  15. S. Venkatesh, S. Guthrie, F. R. Cruickshank, R. T. Bailey, W. S. Foulds, and W. R. Lee, “Thermal lens measurements in the cornea,” Br. J. Ophthalmol. 69(2), 92–95 (1985). [CrossRef] [PubMed]
  16. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000). [CrossRef]
  17. W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13(15), 5750–5755 (2005). [CrossRef] [PubMed]
  18. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun. 119(5-6), 479–484 (1995). [CrossRef]
  19. P. P. Ho and R. R. Alfano, “Optical Kerr effects in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979). [CrossRef]
  20. H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007). [CrossRef] [PubMed]
  21. L. M. Liu, Photonic devices (Cambridge University Press, 2005), Chapter 9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited