OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3762–3767

A novel low-loss Terahertz waveguide: Polymer tube

Daru Chen and Haibin Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3762-3767 (2010)
http://dx.doi.org/10.1364/OE.18.003762


View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a kind of novel low-loss Terahertz (THz) waveguide, a polymer tube with a cross section of ring structure. Low-loss property of the polymer tube for THz guiding is achieved due to the effect of the air core inside the polymer tube which traps a large part of mode power and, at the same time, enlarges the mode area of the fundamental mode. Both the polymer tube and a solid polymer fiber are comparatively investigated, considering effective indexes, mode area, power fraction, relative absorption loss and mode profile. Simulation results show that the proposed polymer tube exhibits better loss property and confinement property than the solid polymer fiber. As an example, we finally show the experimentally measured property of a Polytetrafluoroethylene (PTFE) tube.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(260.3090) Physical optics : Infrared, far

ToC Category:
Integrated Optics

History
Original Manuscript: January 4, 2010
Revised Manuscript: February 1, 2010
Manuscript Accepted: February 2, 2010
Published: February 5, 2010

Citation
Daru Chen and Haibin Chen, "A novel low-loss Terahertz waveguide: Polymer tube," Opt. Express 18, 3762-3767 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992). [CrossRef]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  4. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  5. Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25(15), 1122–1124 (2000). [CrossRef]
  6. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with a nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003). [CrossRef]
  7. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005). [CrossRef]
  8. G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8(2), 241–253 (1995). [CrossRef]
  9. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001). [CrossRef]
  10. R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007). [CrossRef]
  11. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000). [CrossRef]
  12. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).
  13. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002). [CrossRef] [PubMed]
  14. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). [CrossRef] [PubMed]
  15. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–862 (2000). [CrossRef]
  16. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  17. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  18. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008). [CrossRef] [PubMed]
  19. J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008). [CrossRef]
  20. A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  21. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  22. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  23. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymer,” J. Korean Phys. Soc. 49, 513–517 (2006).
  24. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002). [CrossRef]
  25. A. W. Snyder, and J. D. Love, “Optical Waveguide Theory,” Chapman Hall, New York, (1983).
  26. C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited