OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3805–3819

MEMS-based handheld confocal microscope for in-vivo skin imaging

Christopher L. Arrasmith, David L. Dickensheets, and Anita Mahadevan-Jansen  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3805-3819 (2010)
http://dx.doi.org/10.1364/OE.18.003805


View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a handheld laser scanning confocal microscope for skin microscopy. Beam scanning is accomplished with an electromagnetic MEMS bi-axial micromirror developed for pico projector applications, providing 800x600 (SVGA) resolution at 56 frames per second. The design uses commercial objective lenses with an optional hemisphere front lens, operating with a range of numerical aperture from NA=0.35 to NA=1.1 and corresponding diagonal field of view ranging from 653 μm to 216 μm. Using NA=1.1 and a laser wavelength of 830 nm we measured the axial response to be 1.14 μm full width at half maximum, with a corresponding 10%-90% lateral edge response of 0.39 μm. Image examples showing both epidermal and dermal features including capillary blood flow are provided. These images represent the highest resolution and frame rate yet achieved for tissue imaging with a MEMS bi-axial scan mirror.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(180.1790) Microscopy : Confocal microscopy
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 9, 2009
Revised Manuscript: January 24, 2010
Manuscript Accepted: February 1, 2010
Published: February 11, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Christopher L. Arrasmith, David L. Dickensheets, and Anita Mahadevan-Jansen, "MEMS-based handheld confocal microscope for in-vivo skin imaging," Opt. Express 18, 3805-3819 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3805


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Rajadhyaksha, S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113(3), 293–303 (1999). [CrossRef] [PubMed]
  2. K. S. Nehal, D. Gareau, and M. Rajadhyaksha, “Skin imaging with reflectance confocal microscopy,” Semin. Cutan. Med. Surg. 27(1), 37–43 (2008). [CrossRef] [PubMed]
  3. P. Corcuff and J. L. Lévêque, “In vivo vision of the human skin with the tandem scanning microscope,” Dermatology 186(1), 50–54 (1993). [CrossRef] [PubMed]
  4. G. Pellacani, A. M. Cesinaro, and S. Seidenari, “In vivo confocal reflectance microscopy for the characterization of melanocytic nests and correlation with dermoscopy and histology,” Br. J. Dermatol. 152(2), 384–386 (2005). [CrossRef] [PubMed]
  5. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995). [CrossRef] [PubMed]
  6. M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, and S. Gonzalez, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology,” The Society for Investigative Dermatology. 117(5), 1137–1143 (2001). [CrossRef]
  7. C.-S. J. Chen, M. Elias, K. Busam, M. Rajadhyaksha, and A. A. Marghoob, “Multimodal in vivo optical imaging, including confocal microscopy, facilitates presurgical margin mapping for clinically complex lentigo maligna melanoma,” Br. J. Dermatol. 153(5), 1031–1036 (2005). [CrossRef] [PubMed]
  8. Z. Tannous, A. Torres, and S. González, “In vivo real-time confocal reflectance microscopy: a noninvasive guide for Mohs micrographic surgery facilitated by aluminum chloride, an excellent contrast enhancer,” Dermatol. Surg. 29(8), 839–846 (2003). [CrossRef] [PubMed]
  9. H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007). [CrossRef] [PubMed]
  10. H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto, “A MEMS Electromagnetic Optical Scanner for a Commercial Confocal Laser Scanning Microscope,” J. Microelectromech. Syst. 12(3), 243–251 (2003). [CrossRef]
  11. D. L. Dickensheets and G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21(10), 764–766 (1996). [CrossRef] [PubMed]
  12. D. L. Dickensheets and G. S. Kino, “Silicon-micromachined scanning confocal optical microscope,” J. Microelectromech. Syst. 7(1), 38–47 (1998). [CrossRef]
  13. D. L. Dickensheets and Y. Shao, “MOEMS 3-D scan mirror for single-point control of beam deflection and focus,” J. Microlith. Microfab. Microsyst. 4, 2005.
  14. K. Kumar, K. Hoshino, and X. Zhang, “Handheld subcellular-resolution single-fiber confocal microscope using high-reflectivity two-axis vertical combdrive silicon microscanner,” Biomed. Microdevices 10(5), 653–660 (2008). [CrossRef] [PubMed]
  15. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt. 38(10), 2105–2115 (1999). [CrossRef]
  16. W. Piyawattanametha and et al., “MEMS based dual-axis confocal reflectance handheld microscope for in vivo imaging”.
  17. H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L. Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16(10), 7224–7232 (2008). [CrossRef] [PubMed]
  18. K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005). [CrossRef] [PubMed]
  19. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007). [CrossRef] [PubMed]
  20. D. W. Wine, M. P. Helsel, L. Jenkins, H. Urey, and T. D. Osborn, “Performance of a biaxial MEMS-based scanner for microdisplay applications,” in MOEMS and Miniaturized Systems, Santa Clara, CA, 2000, pp. 186–196.
  21. R. H. Webb, “Optics for laser rasters,” Appl. Opt. 23(20), 3680–3683 (1984). [CrossRef] [PubMed]
  22. M. Gu, C. J. R. Sheppard, and X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. 8(11), 1755–1761 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2827 KB)     
» Media 2: MOV (3945 KB)     
» Media 3: MOV (5063 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited