OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3840–3849

Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ

Riccardo Cicchi, Alfonso Crisci, Alessandro Cosci, Gabriella Nesi, Dimitrios Kapsokalyvas, Saverio Giancane, Marco Carini, and Francesco S. Pavone  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3840-3849 (2010)
http://dx.doi.org/10.1364/OE.18.003840


View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Combined non-linear imaging techniques were used to deeply image human ex-vivo fresh biopsies of bladder as well as to discriminate between healthy bladder mucosa and carcinoma in situ. Morphological examination by two-photon excited fluorescence and second-harmonic generation has shown a good agreement with corresponding common routine histology performed on the same samples. Tumor cells appeared slightly different in shape and with a smaller cellular-to-nuclear dimension ratio with respect to corresponding normal cells. Further differences between the two tissue types were found in both spectral emission and fluorescence lifetime distribution by performing temporal- and spectral- resolved analysis of fluorescence. This method may represent a promising tool to be used in a multi-photon endoscope, in a confocal endoscope or in a spectroscopic probe for in-vivo optical diagnosis of bladder cancer.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 18, 2009
Revised Manuscript: January 26, 2010
Manuscript Accepted: January 28, 2010
Published: February 11, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Riccardo Cicchi, Alfonso Crisci, Alessandro Cosci, Gabriella Nesi, Dimitrios Kapsokalyvas, Saverio Giancane, Marco Carini, and Francesco S. Pavone, "Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ," Opt. Express 18, 3840-3849 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3840


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. ACS, (2006), http://www.cancer.org/downloads/STT/CAFF2006PWSecured.pdf , Cancer Facts & Figs. (2006).
  2. J. C. Kah, W. K. Lau, P. H. Tan, C. J. Sheppard, and M. Olivo, “Endoscopic image analysis of photosensitizer fluorescence as a promising noninvasive approach for pathological grading of bladder cancer in situ,” J. Biomed. Opt. 13(5), 054022 (2008). [CrossRef] [PubMed]
  3. E. L. Larsen, L. L. Randeberg, O. A. Gederaas, C. J. Arum, A. Hjelde, C. M. Zhao, D. Chen, H. E. Krokan, and L. O. Svaasand, “Monitoring of hexyl 5-aminolevulinate-induced photodynamic therapy in rat bladder cancer by optical spectroscopy,” J. Biomed. Opt. 13(4), 044031 (2008). [CrossRef] [PubMed]
  4. S. Berrahmoune, N. Fotinos, L. Bezdetnaya, N. Lange, J. C. Guedenet, F. Guillemin, and M. A. D’Hallewin, “Analysis of differential PDT effect in rat bladder tumor models according to concentrations of intravesical hexyl-aminolevulinate,” Photochem. Photobiol. Sci. 7(9), 1018–1024 (2008). [CrossRef] [PubMed]
  5. D. Jocham, F. Witjes, S. Wagner, B. Zeylemaker, J. van Moorselaar, M. O. Grimm, R. Muschter, G. Popken, F. König, R. Knüchel, and K. H. Kurth, “Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study,” J. Urol. 174(3), 862–866, discussion 866 (2005). [CrossRef] [PubMed]
  6. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1/2), 89–117 (2000). [CrossRef] [PubMed]
  7. M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, P. Teillac, and A. Le Duc, “The role of laser-induced autofluorescence spectroscopy in bladder tumor detection. Dependence on the excitation wavelength,” Ann. N. Y. Acad. Sci. 838(1 ADVANCES IN O), 130–141 (1998). [CrossRef] [PubMed]
  8. F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996). [CrossRef] [PubMed]
  9. D. Zaak, H. Stepp, R. Baumgartner, P. Schneede, R. Waidelich, D. Frimberger, A. Hartmann, R. Künchel, A. Hofstetter, and A. Hohla, “Ultraviolet-excited (308 nm) autofluorescence for bladder cancer detection,” Urology 60(6), 1029–1033 (2002). [CrossRef] [PubMed]
  10. W. W. Chin, P. S. P. Thong, R. Bhuvaneswari, K. C. Soo, P. W. S. Heng, and M. Olivo, “In-vivo optical detection of cancer using chlorin e6-polyvinylpyrrolidone induced fluorescence imaging and spectroscopy,” BMC Med. Imaging 9(1), 1–8 (2009). [CrossRef] [PubMed]
  11. Z. Yuan, Z. Wang, R. Pan, J. Liu, H. Cohen, and Y. Pan, “High-resolution imaging diagnosis and staging of bladder cancer: comparison between optical coherence tomography and high-frequency ultrasound,” J. Biomed. Opt. 13(5), 054007 (2008). [CrossRef] [PubMed]
  12. Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005). [CrossRef] [PubMed]
  13. B. Hermes, F. Spöler, A. Naami, J. Bornemann, M. Först, J. Grosse, G. Jakse, and R. Knüchel, “Visualization of the basement membrane zone of the bladder by optical coherence tomography: feasibility of noninvasive evaluation of tumor invasion,” Urology 72(3), 677–681 (2008). [CrossRef] [PubMed]
  14. F. Koenig, J. Knittel, L. Schnieder, M. George, M. Lein, and D. Schnorr, “Confocal laser scanning microscopy of urinary bladder after intravesical instillation of a fluorescent dye,” Urology 62(1), 158–161 (2003). [CrossRef] [PubMed]
  15. G. A. Sonn, S. N. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J. Urol. 182(4), 1299–1305 (2009). [CrossRef] [PubMed]
  16. M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008). [PubMed]
  17. B. R. Masters, P. T. C. So, and E. Gratton, “Optical biopsy of in vivo human skin: multi-photon excitation microscopy,” Lasers Med. Sci. 13(3), 196–203 (1998). [CrossRef]
  18. P. T. C. So, H. Kim, and I. E. Kochevar, “Two-Photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express 3(9), 339–350 (1998). [CrossRef] [PubMed]
  19. J. C. Malone, A. F. Hood, T. Conley, J. Nürnberger, L. A. Baldridge, J. L. Clendenon, K. W. Dunn, and C. L. Phillips, “Three-dimensional imaging of human skin and mucosa by two-photon laser scanning microscopy,” J. Cutan. Pathol. 29(8), 453–458 (2002). [CrossRef] [PubMed]
  20. K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003). [CrossRef] [PubMed]
  21. K. Steenkeste, S. Lécart, A. Deniset, P. Pernot, P. Eschwège, S. Ferlicot, S. Lévêque-Fort, R. Briandet, and M. P. Fontaine-Aupart, “Ex vivo fluorescence imaging of normal and malignant urothelial cells to enhance early diagnosis,” Photochem. Photobiol. 83(5), 1157–1166 (2007). [CrossRef] [PubMed]
  22. S. M. Zhuo, J. X. Chen, T. Luo, X. S. Jiang, and S. S. Xie, “Multiphoton microscopy of unstained bladder mucosa based on two-photon excited autofluorescence and second-harmonic generation,” Laser Phys. Lett. 6(1), 80–83 (2009). [CrossRef]
  23. R. Yadav, S. Mukherjee, M. Hermen, G. Tan, F. R. Maxfield, W. W. Webb, and A. K. Tewari, “Multiphoton microscopy of prostate and periprostatic neural tissue: a promising imaging technique for improving nerve-sparing prostatectomy,” J. Endourol. 23(5), 861–867 (2009). [CrossRef] [PubMed]
  24. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  25. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  26. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  27. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  28. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  29. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003). [CrossRef] [PubMed]
  30. P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4(1), 38 (2006). [CrossRef] [PubMed]
  31. R. Cicchi, S. Sestini, V. De Giorgi, D. Massi, T. Lotti, and F. S. Pavone, “Non-linear laser imaging of skin lesions,” J. Biophoton. 1(1), 62–73 (2008). [CrossRef]
  32. L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005). [CrossRef] [PubMed]
  33. P. J. Tadrous, “Methods for imaging the structure and function of living tissues and cells: 2. Fluorescence lifetime imaging,” J. Pathol. 191(3), 229–234 (2000). [CrossRef] [PubMed]
  34. P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, N. Lalani, and G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199(3), 309–317 (2003). [CrossRef] [PubMed]
  35. Y. Chen and A. Periasamy, “Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization,” Microsc. Res. Tech. 63(1), 72–80 (2004). [CrossRef]
  36. S. Y. Breusegem, M. Levi, and N. P. Barry, “Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy,” Nephron, Exp. Nephrol. 103(2), e41–e49 (2006). [CrossRef]
  37. R. Cicchi, D. Massi, S. Sestini, P. Carli, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional non-linear laser imaging of Basal Cell Carcinoma,” Opt. Express 15(16), 10135–10148 (2007). [CrossRef] [PubMed]
  38. R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008). [CrossRef]
  39. S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, “Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy,” Opt. Lett. 30(17), 2275–2277 (2005). [CrossRef] [PubMed]
  40. J. Paoli, M. Smedh, A. M. Wennberg, and M. B. Ericson, “Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics,” J. Invest. Dermatol. 128(5), 1248–1255 (2008). [CrossRef]
  41. O. Warburg, “The metabolism of tumors,” Constabel, London (1930).
  42. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007). [CrossRef] [PubMed]
  43. D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65(19), 8766–8773 (2005). [CrossRef] [PubMed]
  44. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited