OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3883–3892

Multiple and dependent scattering effects in Doppler optical coherence tomography

J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3883-3892 (2010)
http://dx.doi.org/10.1364/OE.18.003883


View Full Text Article

Enhanced HTML    Acrobat PDF (1941 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Doppler optical coherence tomography (OCT) is a technique to image tissue morphology and to measure flow in turbid media. In its most basic form, it is based on single (Mie) scattering. However, for highly scattering and dense media multiple and concentration dependent scattering can occur. For Intralipid solutions with varying scattering strength, the effect of multiple and dependent scattering on the OCT signal attenuation and Doppler flow is investigated. We observe a non-linear increase in the OCT signal attenuation rate and an increasingly more distorted Doppler OCT flow profile with increasing Intralipid concentration. The Doppler OCT attenuation and flow measurements are compared to Monte Carlo simulations and good agreement is observed. Based on this comparison, we determine that the single scattering attenuation coefficient µs is 15% higher than the measured OCT signal attenuation rate. This effect and the distortion of the measured flow profile are caused by multiple scattering. The non-linear behavior of the single scattering attenuation coefficient with Intralipid concentration is attributed to concentration dependent scattering.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 8, 2009
Revised Manuscript: January 24, 2010
Manuscript Accepted: February 3, 2010
Published: February 11, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen, "Multiple and dependent scattering effects in Doppler optical coherence tomography," Opt. Express 18, 3883-3892 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997). [CrossRef] [PubMed]
  2. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994). [CrossRef] [PubMed]
  3. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484 (2000). [CrossRef]
  4. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009). [CrossRef] [PubMed]
  5. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002). [CrossRef] [PubMed]
  6. H. T. Yura, L. Thrane, and P. E. Andersen, “Analysis of multiple scattering effects in optical Doppler tomography,” Proc. SPIE 5861, 5861B–1 (2005).
  7. A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Monte Carlo simulation of an optical coherence Doppler tomography signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile,” Quantum Electron. 35(2), 135–139 (2005). [CrossRef]
  8. J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Appl. Phys. D:. 38(15), 2597–2605 (2005). [CrossRef]
  9. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24(22), 1584–1586 (1999). [CrossRef]
  10. G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Complex Media 5(4), 413–426 (1995).
  11. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003). [CrossRef] [PubMed]
  12. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003). [CrossRef]
  13. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507 (1991). [CrossRef] [PubMed]
  14. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907 (2008). [CrossRef] [PubMed]
  15. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004). [CrossRef] [PubMed]
  16. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107 (1974). [CrossRef]
  17. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004). [CrossRef]
  18. E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A 156(1), 8–13 (2009). [CrossRef]
  19. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  20. A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomography signal,” Quantum Electron. 35(11), 1079–1082 (2005). [CrossRef]
  21. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett. 31(7), 927–929 (2006). [CrossRef] [PubMed]
  22. A. Ishimaru and Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72(10), 1317 (1982). [CrossRef]
  23. B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” Int. J. Thermophys. 1(1), 63–68 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited