OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4023–4040

Analytical beam propagation model for clipped focused-Gaussian beams using vector diffraction theory

Glen D. Gillen, Christopher M. Seck, and Shekhar Guha  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4023-4040 (2010)
http://dx.doi.org/10.1364/OE.18.004023


View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vector diffraction theory is applied to the case of focused TEM00 Gaussian beams passing through a spatially limiting aperture in order to investigate the propagation of these clipped focused-Gaussian beams. Beam distributions at different axial distances show that a traditional M2 propagation model cannot be used for the propagation of clipped focus-Gaussian beams. Using Luneberg’s vector diffraction theory and Fresnel approximations, an analytical model for the on-axis transverse and longitudinal electric fields and intensity distributions is presented including predictions of the maximum obtainable intensity. In addition, an analytical expression is provided for the longitudinal component of the electric field of a TEM00 mode unperturbed Gaussian beam. Experimental results are also presented and compared to the model’s predictions.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(220.2560) Optical design and fabrication : Propagating methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 21, 2009
Revised Manuscript: February 7, 2010
Manuscript Accepted: February 9, 2010
Published: February 16, 2010

Citation
Glen D. Gillen, Christopher M. Seck, and Shekhar Guha, "Analytical beam propagation model for clipped focused-Gaussian beams using vector diffraction theory," Opt. Express 18, 4023-4040 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4023


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kogelnik and T. Li, "Laser beam resonators," Proc. IEEE 54, 1312-1329 (1966). [CrossRef]
  2. A. Yariv, Quantum Electronics, Third Edition, (John Wiley & Sons, New York, NY, 1989.)
  3. W. T. Sifvast, Laser Fundamentals, (Cambridge University Press, New York, NY, 1996.)
  4. A. E. Siegman, Lasers, (University Science Books, Mill Valley, CA, 1986.)
  5. M. W. Sasnett, Physics and Technology of Laser Resonators, (Hilger, New York, NY 1989.)
  6. A. E. Siegman, "New Developments in Laser Resonators," Proc. SPIE 1224, 2-12 (1990). [CrossRef]
  7. I. Ghebregziabher and B. C. Walker, "Effect of focal geometry on radiation from atomic ionization in an ultrastrong and ultrafast laser field," Phys. Rev. A 76, 023415 (2007). [CrossRef]
  8. J. M. P. Coelho, M. A. Abreu, and F. C. Rodrigues, "Modelling the spot shape influence on high-speed transmission lap welding of thermoplastic films," J. Opt. Lasers Eng. 46, 55-61 (2007). [CrossRef]
  9. Y. Li, "Focal shifts in diffracted converging electromagnetic waves. I. Kirchhoff theory," J. Opt. Soc. Am. A 22, 68-76 (2005). [CrossRef]
  10. Y. Li, "Focal shifts in diffracted converging electromagnetic waves. II. Rayleigh theory," J. Opt. Soc. Am. A 22, 77-83 (2005). [CrossRef]
  11. G. P. Agrawal and D. N. Pattanayak, "Gaussian beam propagation beyond the paraxial approximation," J. Opt. Soc. Am. 69, 575-578 (1979). [CrossRef]
  12. C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann, and M. L. Schattenburg, "Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations," J. Opt. Soc. Am. A 19, 404-412 (2002). [CrossRef]
  13. B. Lu and K. Duan, "Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture," Opt. Lett. 28, 2440-2442 (2003). [CrossRef] [PubMed]
  14. K. Duan and B. Lu, "Vectorial nonparaxial propagation equation of elliptical Gaussian beams in the presence of a rectangular aperture," J. Opt. Soc. Am. A 21, 1613-1620 (2004). [CrossRef]
  15. K. Duan and B. Lu, "Polarization properties of vectorial nonparaxial Gaussian beams in the far field," Opt. Lett. 2005, 308-310 (2005). [CrossRef]
  16. G. Bekefi, "Diffraction of electromagnetic waves by an aperture in a large screen," J. Appl. Phys. 24, 1123-1130 (1953). [CrossRef]
  17. S. Guha and G. D. Gillen, "Description of light propagation through a circular aperture using nonparaxial vector diffraction theory," Opt. Express 13, 1424-1447 (2005). [CrossRef] [PubMed]
  18. G. D. Gillen, K. Baughman, and S. Guha, "Application of Hertz vector diffraction theory to the diffraction of focused Gaussian beams and calculations of focal parameters," Opt. Express 17,1478-1492 (2009). [CrossRef] [PubMed]
  19. W. H. Carter, "Electromagnetic field of a Gaussian beam with an elliptical cross section," J. Opt. Soc. Am. 62, 1195-1201 (1972). [CrossRef]
  20. M. Lax, W. H. Louisell and W. B. McKnight, "From Maxwell to paraxial wave optics," Phys. Rev. A 11, 1365-1370 (1975). [CrossRef]
  21. L. Cicchitelli, H. Hora and R. Postle, "Longitudinal field components for laser beams in vacuum," Phys. Rev. A 41, 3727-3732 (1990). [CrossRef] [PubMed]
  22. M. O. Scully, "A simple laser linac," Appl. Phys. B 51, 238-241 (1990). [CrossRef]
  23. J. J. Macklin, J. K. Trautman, T. D. Harris and L. E. Brus, "Imaging and time-resolved spectroscopy of single molecules at an interface," Science 272, 255-258 (1996). [CrossRef]
  24. L. Novotny, M. R. Beversluis, K. S. Youngworth and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001). [CrossRef] [PubMed]
  25. S. Takeuchi, R. Sugihara and K. Shimoda, "Electron acceleration by longitudinal electric field of a Gaussian laser beam," J. Phys. Soc. Jpn. 63, 1186-1193 (1994). [CrossRef]
  26. J. P. Paquette and J. L. Chaloupka, "Effect of realistic focal conditions on the strong-field ionization of helium," Phys. Rev. A 79, 043410 (2009). [CrossRef]
  27. G. D. Gillen and S. Guha, "Modeling and propagation of near-field diffraction patterns: a more complete approach," Am. J. Phys. 72, 1195-1201 (2004). [CrossRef]
  28. R. K. Luneberg, Mathematical theory of optics, (University of California Press, Berkeley, California, 1964.)
  29. A. J. Campillo, J. E. Pearson, S. L. Shapiro, and N. J. Terrell, Jr., "Fresnel diffraction effects in the design of high-power laser systems," Appl. Phys. Lett. 23, 85-87 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited